
Lambda Abstraction
(Chierchia & McConnell-Ginet Chapter 7)

Lambda calculus was invented by Alonzo Church in the 1940s and 50s.  In 1957
John McCarthy designed the programming language LISP, based on the lambda
calculus.  The Greek letter lambda is:  λ

These days the lambda calculus is used in two different but related ways by linguists
and linguistically-minded computer scientists

• to describe a logic of (logical) types, for programming languages and
program execution

• to simplify/unify the description of the semantics for some linguistic
constructions

(We’ll just talk about aspects of the second type, with only a brief nod to issues
concerned with type-shifting).



Problem:
a) and  is a sentence connective in our PC and IPC semantic representation
b) and occurs as a VP-connective in English

For example: Mary kissed George and drove home

STRATEGY 1:
Add new syntactic rule

VP → VP1 conjvp VP2  (conjvp to distinguish from ordinary sentence conj’s)

Add new raising rule
[tp NP [vp VP1 conjvp VP2]  ⇒  [tp [tp NP VP1] conj [tp NP VP2]

(conj is the ordinary sentence conjunction corresponding to conjvp)

(we talk about and-conjunction first, but be aware that there are other types of VP-
conjunction, such as or-conjunction; and possibly there is if-conjunction, if and only
if-conjunction, only-conjunction, and unless-conjunction)



Problem with STRATEGY 1:

Sentences with quantified NPs in the subject:

A girl kissed George and drove home
Some girl kissed George and drove home
Most girls kissed George and drove home
A few girls kissed George and drove home

Etc.

The result of the raising rule would be:

A girl kissed George and a girl drove home
Some girl kissed George and some girl drove home
Most girls kissed George and most girls drove home
A few girls kissed George and a few girls drove home

(Also, researchers always had difficulty determining the exact conditions under
which this sort of rule would apply).



So, STRATEGY 2:

Add new syntactic rule
VP → VP1 conjvp VP2  (conjvp to distinguish from ordinary sentence conj’s)

Try to find a semantic representation of this VP that could directly combine with
the subject NP, while converting conj2 into the right sentence connective.

λ-calculus to the rescue!  Using the resources of λ-calculus, we can define properties
that correspond to VPs (and to other things, coming up later) that will have the
correct behavior and will be able to combine with the NP subject.

To explain this in general we start with the simpler cases of using λ-calculus, before
even trying to do conjunctions.  After that, we get to conjunctions, relative clauses,
and VP ellipsis.



Take a “logical predicate”, such as an intransitive verb (e.g., smiled) or be+PredAdj
(e.g., is happy):

We can use l to form the “property expression” that corresponds to these:
λx[smiled(x)] λx[happy(x)]

by “lambda abstraction”.  The item thereby formed is called a lambda-abstract, or
a lambda-term

The way to read these terms is:
“the property of (actually) having smiled”
“the property of (actually) being happy”

[or, “the property of being one of the things that smiled”, “the property of being one
of the happy things”]

(This somewhat stilted way of putting it is due to the fact that we are talking about
the extensional case.  After we move to the intensional case we can just say “the
property of having smiled” and “the property of being happy”.)



The very same thing can be done with any VP that has only one open “slot” (PRED1,
in the terminology of C&M-G):

kissed Mary:  λx[kissed(x,Mary)] “The property of actually having kissed Mary”

kissed someone: λx[∃y(kissed(x,y)] “The property of actually having kissed someone”

Consider VP-conjunction now.

[vp smiles and kissed Mary]  ⇒  λx[smiles(x) ∧ kissed(x,Mary)]
 “the property of actually having smiled and kissed Mary”



Note that there is a sort of “type mismatch” between the and’s under discussion.
The conj that we’ve always talked about joins sentences (which designate a truth
value, in a model), where the conjvp joins VPs, which do not designate a truth value,
in a model, but rather designate the set of things which manifest the feature that is
designated by the VP.  So what we want is to form the set of things which have
manifested both VP-sets…i.e., their intersection.  So conjvp means something like set
intersection, but we can represent that by the sentence-conjunction of formulas….
Which is one of the advantages of  λ-calculus.

Our authors do not especially remark on this, and say on p.409 (rule 32) that you
just use the ordinary sentence conj to conjoin VPs.   On the other hand, they do
define what the new conjvp would look like:

[P1 conjvp P2]  = λx[P1(x) ∧ P2 (x)]

This is called a point-wise definition of conjvp because it defines conjvp in terms of
what it does to each individual x in the domain, rather than to the P1’s and P2’s
themselves.



Lambda-Conversion:

(Suppose part of our grammar is: NP→PN and S→NP VP)

And we have just described λx[smiled(x)] as the semantic representation of the
intransitive VP smiled.  And we might have r for the semantic representation of the
PN Ralph.  Then the sentence

Ralph smiled

ought to have that the VP-representation apply to the NP-representation:

(a) λx[smiled(x)] (r)

“r has the property of (actually) having smiled”.  We can move from the way this is
stated in (a) to

(b) smiled(r)

by the process of lambda-conversion.  All you do is….



Conceptually λ-conversion is pretty simple.  You just replace the λ-bound variable
with the argument.   But you can get more tricky with complex formulas, and in
these cases one needs to carefully check the scope of the λ-term.

λu∀x[λz[λw[ [Q(w) ∧ B(m,u)] ↔ K(x,w)](z)](j) → λy[K(y,x) ∨ Q(y)](m)] (a)

“inside-out”:  λw[ [Q(w) ∧ B(m,u)] ↔ K(x,w)](z)  ⇒  [ [Q(z) ∧ B(m,u)] ↔ K(x,z)]

λz [ [Q(z) ∧ B(m,u)] ↔ K(x,z)] (j)  ⇒   [ [Q(j) ∧ B(m,u)] ↔ K(x,j)]

λy[K(y,x) ∨ Q(y)](m)  ⇒  [K(m,x) ∨ Q(m)]

This leaves us with

λu∀x [ [Q(j) ∧ B(m,u)] ↔ K(x,j)] →  [K(m,x) ∨ Q(m)] ] (a)  ⇒

∀x [ [Q(j) ∧ B(m,a)] ↔ K(x,j)] →  [K(m,x) ∨ Q(m)] ]

Obviously you have to be careful with variable clashing between λ-terms and
quantified terms.



Now go to the practice translation slides:

Every hobbit is short or is fat
  vs.
Every hobbit is short or every hobbit is fat



Let’s look at transitive verbs, such as loves.  The representation of loves is:

λu[λv[loves(u)](v)]   or for shorthand, λuλv[loves(u)(v)]

If we first apply this to Sally:

λuλv[loves(u)(v)] (s)

we get: λu[loves(s)(u)]    i.e., “the property of loving Sally”

and if we now apply this to George:

we get:  loves(s)(g).   <Note order of arguments>

This is the general way transitive (and di-transitive) verbs work.

<Now go to the overheads for >
An elf knows Gandalf and loves Aragorn
  vs.
An elf knows Gandalf and an elf loves Aragorn



Let’s now consider conjoined Vt’s that are part of a VP with a “displaced” object:

An elf knows and loves Aragorn

John saw and bought a shirt

For two-place predicates:  [Pred1 conj2 Pred2] = λxλy[Pred1(x)(y) ∧ Pred2(x)(y)]
The syntactic analysis of the VP yields a LF representation (something like):

[VP [Vt[Vt knows] and [Vt loves] ] [NP Aragorn] ]

So we will get (for the embedded Vt)
λv[λu [knows(u)(v)] ] conj2 λv[λu [loves(u)(v)] ]  from whence (by above rule)
λxλy[λv[λu [knows(u)(v)] ] (x)(y)   ∧ λv[λu [loves(u)(v)] ] (x)(y) ] ] ⇒

 λxλy [knows(x)(y)  ∧ loves(x)(y)]

Now for the VP:
λxλy [knows(x)(y)  ∧ loves(x)(y)] (Aragorn) ⇒
λy [knows(Aragorn)(y)  ∧ loves(Aragorn)(y)]

  



But the VP is embedded in a TP with a NP-trace, say t1  , and this yields

λy [knows(Aragorn)(y)  ∧ loves(Aragorn)(y)] (x1) ⇒

[knows(Aragorn)(x1)  ∧ loves(Aragorn)(x1)]

The subject is An elf (which is co-indexed with x1)which combines with this to yield:

∃x(Elf(x1) ∧ [knows(Aragorn)(x1)  ∧ loves(Aragorn)(x1)] )

i.e., Some elf knows and loves Aragorn



λ-abstraction/conversion in intensional logic.

Always before, when we said λ x[P(x)], this was the property of actually being P, or
maybe “being P in the model M”, or “being one of the P-things in M”.  Technically
speaking this means:

ªλx[P(x)] ºM,g = {u : ªP(x)ºM,g[u/x]= 1}

But now we introduce worlds and times into the evaluation.  And we discover that
hardly anything formal changes:

ªλx[P(x)] ºM,w,i,g = {u : ªP(x)ºM,w,i,g[u/x]= 1}

it is now the property of being P, period.  No mention of “actually”.  It is now “being
P in all worlds”, etc.

And this has a variety of consequences.



Consider
�[ λx[P(x)] (m)]  -- which is more properly written � λx[P(x)] (m)

vs.
�P(m)

In the first one, we find the value of m in the actual world (or whatever world we are
using for evaluation).  We say of that object that it has property P.  And that this is
necessary, and therefore holds in every world.  So whoever m is in the actual world
has P in every world.

The second one says that, for every world, whatever m designates in a world is P in
that world.

Obviously, if m is a rigid designator, these amount to the same thing.  But if m
stands for ‘the PM of Canada’, and P stands for ‘is leader of the Canadian
Parliament’, then the first one says “Paul Martin is leader of the Canadian
Parliament” is true in every world, whereas the second one says “The PM of
Canada is leader of the Canadian Parliament”

�P(m) would come from λx[�P(x)] (m)



A piece of terminology:

Montague introduced the convention that when you are talking about individual
lexical terms that you don’t have any special representations of, you simply add a
prime to the word, and that means “the semantic representation of __, whatever it
is”.  For example, for the English word smiled you designate the semantic
representation as smiled´.   (Actually, in Montague you would boldface the word
and add the prime, instead of a squiggly underline.  But these overheads are already
boldfaced.  Our book gives this convention on p.401, rule (24).)


