Tense

Ling 406/802; Spring 2005
Readings: Meaning and Grammar, Ch. 5.3.1

Syntax of Tense

- Clause structure of simple tensed sentences

- We want to apply semantics of tense in IPC to English.

But tense in IPC is a sentential operator: it operates on formulas/clauses, whereas in clause structure of English, tense takes a VP.

Syntax of Tense (cont.)

- Apply an operation at LF (Logical Form) to yield an interpretable structure: tense raising (TR).

TP

- So, you need the following syntactic rules.
(1) a. $\mathrm{TP} \rightarrow \mathrm{NP} \mathrm{T}^{\prime}$
b. $\quad \mathrm{T}^{\prime} \rightarrow \mathrm{T}$ VP
c. tense raising (TR): [TP NP T VP] $\Rightarrow[\mathrm{T}[T P \mathrm{NP} \mathrm{VP}]]$

Semantics of Tense

- Future tense

$$
\begin{gathered}
\rrbracket^{M, w, i, g}=1 \text { iff for some } i^{\prime} \text { such that } i<i^{\prime}, \\
\\
\\
\llbracket \text { Smeagol kill Deagol } \rrbracket^{M, w, i^{\prime}, g}=1 .
\end{gathered}
$$

- Past tense

Syntax of a Fragment of English (F3)

1. (a) $\mathrm{TP} \rightarrow \mathrm{NP} \mathrm{T}^{\prime}$
(b) $\mathrm{T}^{\prime} \rightarrow \mathrm{TVP}$
(c) $\mathrm{TP} \rightarrow \mathrm{TP}$ conj TP
(d) TP \rightarrow neg TP
(e) $\mathrm{T} \rightarrow$ Past, Pres, Fut
(f) $\mathrm{VP} \rightarrow \mathrm{V}_{t} \mathrm{NP}$
(g) $\mathrm{VP} \rightarrow \mathrm{V}_{i}$
(h) VP $\rightarrow \mathrm{V}_{d t} \mathrm{NP}$ PP[to]
(i) $\mathrm{NP} \rightarrow \operatorname{Det} \mathrm{N}_{c}$
(j) $\mathrm{NP} \rightarrow \mathrm{N}_{p}$
(k) PP[to] \rightarrow to NP
(I) Det \rightarrow the, a, every
(m) $\mathrm{N}_{p} \rightarrow$ Frodo, Smeagol, Deagol, Sam, Aragorn, ... he $_{1}, \ldots$, he $_{n}, \ldots$
(n) $\mathrm{N}_{c} \rightarrow$ book, fish, man, hobbit, ...
(o) $\mathrm{V}_{i} \rightarrow$ is intelligent, is hungry, is tall, ...
(p) $\mathrm{V}_{t} \rightarrow$ destroy, kill, read, \ldots
(q) $\mathrm{V}_{d t} \rightarrow$ give, introduce, \ldots
(r) conj \rightarrow and, or
(s) neg \rightarrow it is not the case that
2. Rule for Quantifier Raising (QR)
$[T P \mathrm{X}$ NP Y$] \Rightarrow\left[{ }_{T P} \mathrm{NP}_{i}\left[{ }_{T P} \mathrm{X} \mathrm{e}_{i} \mathrm{Y}\right]\right]$
3. Rule for Tense Raising (TR)
$\left[T P\right.$ NP TVP] $\Rightarrow\left[{ }_{T P} \mathrm{~T}\left[{ }_{T P} \mathrm{NP}\right.\right.$ VP] $]$

A Model for F3

An F3 model for English is a 5-tuple $<W, I,<, U, V>$, where:

1. W is a set of worlds.
2. I is a set of instants ordered by the relation $<$.
3. U is the domain of individuals.
4. V is a function that assigns an intension to the constants of F3.
(a) If β is a proper name, then $V(\beta)$ is a constant function from $W \times I$ to U denoting the bearer of the proper name.
(b) $V($ fish $)(<w, i>)=\{x: x$ is a fish in w at time $i\}$.
(c) V (is tall $)(<w, i>)=\{x: x$ is tall in w at time $i\}$.
(d) V (kill) $(<w, i\rangle)=\{\langle x, y\rangle: x$ kill y in w at time $i\}$.
(e) V (give) $(<w, i\rangle)=\{\langle x, y, z\rangle: x$ give y to z in w at time $i\}$.
(f) V (it is not the case that) $=\left[\begin{array}{l}1 \rightarrow 0 \\ 0 \rightarrow 1\end{array}\right]$
(g) $V($ and $)=\left[\begin{array}{c}<1,1>\rightarrow 1 \\ <1,0>\rightarrow 0 \\ <0,1>\rightarrow 0 \\ <0,0>\rightarrow 0\end{array}\right]$
(h) V (or) $=\left[\begin{array}{l}<1,1>\rightarrow 1 \\ <1,0>\rightarrow 1 \\ <0,1>\rightarrow 1 \\ <0,0>\rightarrow 0\end{array}\right]$

Semantics of F3

1. If A is a category and β is a trace or a pronoun, $\llbracket\left[{ }_{A} \beta\right] \rrbracket^{M, w, i, g}=g(\beta)$; otherwise, $\llbracket\left[{ }_{A} \beta\right] \rrbracket^{M, w, i, g}=V(\beta)$
2. If A and B are any categories, $\llbracket\left[{ }_{A} \mathrm{~B}\right] \rrbracket^{M, w, i, g}=\llbracket \mathrm{B} \rrbracket^{M, w, i, g}$
3. $\llbracket[P P$ to NP$] \rrbracket^{M, w, i, g}=\llbracket \mathrm{NP} \rrbracket^{M, w, i, g}$
4. $\llbracket\left[{ }_{T P} \mathrm{NP} \mathrm{T}\right] \rrbracket^{M, g}=1 \mathrm{iff} \llbracket \mathrm{NP} \rrbracket^{M, w, i, g} \in \llbracket \mathrm{~T}^{\prime} \rrbracket^{M, w, i, g}$
5. $\llbracket\left[{ }_{T P}\right.$ TP1 conj TP2 $\rrbracket \rrbracket^{M, w, i, g}=\llbracket \operatorname{conj} \rrbracket \rrbracket^{M, w, i, g}\left(<\llbracket \mathrm{TP} 1 \rrbracket^{M, w, i, g}, \llbracket \mathrm{TP} 2 \rrbracket^{M, w, i, g}>\right)$
6. $\llbracket\left[T P\right.$ neg TP $\rrbracket \rrbracket^{M, w, i, g}=\llbracket \mathrm{neg} \rrbracket^{M, w, i, g}\left(\llbracket \mathrm{TP} \rrbracket^{M, w, i, g}\right)$
7. $\llbracket\left[V P \mathrm{~V}_{t} \mathrm{NP}\right] \rrbracket^{M, w, i, g}=\left\{\mathrm{x}:<\mathrm{x}, \llbracket \mathrm{NP} \rrbracket^{M, w, i, g}>\in \llbracket \mathrm{V}_{t} \rrbracket^{M, w, i, g}\right\}$
8. $\llbracket\left[V{ }_{V} \mathrm{~V}_{d t} \mathrm{NP} \mathrm{PP}\right] \rrbracket^{M, w, i, g}=\left\{\mathrm{x}:<\mathrm{x}, \llbracket \mathrm{NP} \rrbracket^{M, w, i, g}, \llbracket \mathrm{PP} \rrbracket^{M, w, i, g}>\in\right.$ $\left.\llbracket \mathrm{V}_{t} \rrbracket^{M, w, i, g}\right\}$
9. $\llbracket[\text { every } \beta]_{i} \mathrm{TP} \rrbracket^{M, w, i, g}=1$ iff for all $d \in U$, if $d \in \llbracket \beta \rrbracket^{M, w, i, g}$, then $\llbracket \mathrm{TP} \rrbracket^{M, w, i, g\left[d / e_{i}\right]}=1$, where $e_{i}=t_{i}$ or $e_{i}=$ he $_{i}$
10. $\llbracket[\mathrm{a} \beta]_{i} \mathrm{TP} \rrbracket^{M, w, i, g}=1$ iff for some $d \in U, d \in \llbracket b \rrbracket^{M, w, i, g}$, and $\llbracket \mathrm{TP} \rrbracket^{M, w, i, g\left[d / e_{i}\right]}=1$, where $e_{i}=t_{i}$ or $e_{i}=$ he $_{i}$
11. $\llbracket[\text { the } \beta]_{i} \operatorname{TP} \rrbracket^{M, w, i, g}=1$ iff for some $d \in U, \llbracket \beta \rrbracket^{M, w, i, g}=\{d\}$, and $\llbracket \mathrm{TP} \rrbracket^{M, w, i, g\left[d / e_{i}\right]}=1$, where $e_{i}=t_{i}$ or $e_{i}=$ he $_{i}$
12. $\llbracket \operatorname{Pres} \operatorname{TP} \rrbracket^{M, w, i, g}=\llbracket \mathrm{TP} \rrbracket^{M, w, i, g}$
13. \llbracket Past TP $\rrbracket^{M, w, i, g}=1 \mathrm{iff}$ for some $i^{\prime} \in I$ such that $i^{\prime}<i$, $\llbracket \mathrm{TP} \rrbracket^{M, w, i^{\prime}, g}=1$
14. \llbracket Fut TP $\rrbracket^{M, w, i, g}=1 \mathrm{iff}$ for some $i^{\prime} \in I$ such that $i^{\prime}>i, \llbracket \mathrm{TP} \rrbracket^{M, w, i^{\prime}, g}=1$

Compositional Semantics

(2) Every student read Lord of the Rings.

LF1: every > Past

Compositional Semantics

(3) Every student read Lord of the Rings.

LF2: Past>every

> TP

Problems: Scope of Tense and Quantified Nominal Phrase

- The possible readings are too restricted.
(4) Every student read Lord of the Rings.
' $\forall>$ Past' reading: "Every current student read Lord of the Rings at some past time (possibley at different past times)."
'Past $>\forall$ ' reading: "There is a particular past time in which every past student read Lord of the Rings at that time."

Not available: "There is a particular past time in which every current student read Lord of the Rings at that time."

Not available: "Every past student and every current student read Lord of the Rings at some past time (possibly at different past times)."

Problems: Scope of Negation and Tense

- Negation
(5) Sam does not like Gollum.

Problems: Scope of Negation and Tense (cont.)

- Scope of negation and quantified NP
(6) Every hobbit does not swim.

Problems: Scope of Negation and Tense (cont.)

- Scope of negation and tense
(7) Bilbo did not kill Gollum.

TP

TP

$\mathbf{P} \neg$ kill(bilbo, gollum)
"There is a time that precedes the evaluation time at which Bilbo does not kill Gollum." (trivially true, nonsensical reading)

Problems: Scope of Negation and Tense (cont.)

- Interpretation obtained from 'neg>tense’ scope is not always adequate.
(8) John didn't turn off the stove. (Partee 1973)
'neg>tense' reading: "There is no time that precedes the evaluation time at which John turns off the stove." = " John has never turned off the stove."

The reading we want to obtain: "There is a specific time that the speaker has in mind, R, such that R precedes the time of evaluation, and John doesn't turn off the stove at R."

