PHILOSOPHY 210

(PELLETIER, Fall 2007)

Assignment \#6

Directions: Answer all questions. This HW is worth $8-1 / 3 \%$ of your grade.
The HW is due in class (beginning) on 30 November (Friday). No late assignments -- if you are not finished, turn in what you have for partial marks. I would appreciate it very much if you would do your work independently. Write neatly, staple your pages together, and please put your name and student ID on the HW.
I. The following arguments are invalid. Find a countermodel for each. That is, describe a universe and a valuation function [what our text calls an Interpretation] that will make all the premises true and the conclusion false. In doing so, show how your model does the trick.

1. $\forall x \forall y \exists z F^{3} \mathrm{xyz} \therefore \forall y \exists \mathrm{zF}^{3} \mathrm{zyz}$
2. (sort of tricky) $\forall x \exists y F x y \therefore \exists x \exists y(F x y \& F y x)$
3. (hard) $\exists \mathrm{x}(\mathrm{Fax} \& \sim \mathrm{Fbx}), \forall \mathrm{x} \exists \mathrm{yFxy}, \forall \mathrm{x} \forall \mathrm{y}(\mathrm{Fxy} \supset \sim \mathrm{Fyx}) \therefore \exists \mathrm{x}(\mathrm{Fxa} \vee \mathrm{Fxb})$
II. Construct derivations in PD+ for the following arguments.
4. $\exists \mathrm{x}(\mathrm{Px} \& \forall \mathrm{y}(\mathrm{Dy} \supset \sim L x y)), \forall \mathrm{x}(\mathrm{Ux} \supset \mathrm{Dx}) \therefore \exists \mathrm{x}(\mathrm{Px} \& \forall \mathrm{y}(\mathrm{Uy} \supset \sim L x y))$
5. $(\forall x(F x \supset G x) \vee \exists x(\mathrm{Ix} \& H x)), \forall x(\mathrm{Ix} \supset \sim H x) \therefore(\exists x F x \supset \exists x(G x \& F x))$
6. $\forall \mathrm{z}(\mathrm{Hz} \supset(\mathrm{Rzz} \supset \mathrm{Gz})), \forall \mathrm{z}(\mathrm{Gz} \supset \mathrm{Bz}) \& \forall \mathrm{z} \sim \mathrm{Bz} \therefore \forall \mathrm{w} \exists \mathrm{z} \sim(\mathrm{Hz} \& \mathrm{Rzw})$
7. $\forall x \forall y \exists w \forall z H^{6}(w w x y z z) \therefore \exists y \forall w \exists \mathrm{xH}^{6}(\mathrm{xxwyxx})$
8. (v. hard) $\forall z \exists y \forall x(F x y \equiv(F x z \& \sim F x x)) \therefore \sim \exists z \forall x F x z$
9. (hard) $\forall x((G x \& \sim \forall y(F x y \supset H x y)) \supset \sim \exists z(I z x \& \sim J z x)), \forall x(P x \supset \forall y(K y x \supset F y x))$, $\forall x(\exists y(L x y \& H x y) \supset \sim \exists y F x y), \sim \exists x \exists y(L x y \& \sim I y x) \therefore \forall x(G x \supset \forall y((P y \& L x y \& K x y) \supset J y x))$
III. Using the PLI (predicate logic with identity) symbolize the following, using the given scheme of abbreviation.
10. No monogamous person has more than one spouse. ($\mathrm{P}: \mathrm{x}$ is a person; $\mathrm{M}: \mathrm{x}$ is monogamous; $\mathrm{S}: \mathrm{x}$ is a spouse of y)
11. Alfred is the only member of the class who can read Greek. (M: x is a member of $y ; R: x$ can read y ; a: Alfred; c: the class; g: Greek)
12. Pergolesi was the most promising composer of his time. ($\mathrm{P}: \mathrm{x}$ is more promising than y ; $\mathrm{L}: \mathrm{x}$ lives at the same time as y; $\mathrm{C}: \mathrm{x}$ is a composer; p : Pergolesi)
13. The fastest fish is fitter than the fattest fish. (F: x is a fish; $\mathrm{S}: \mathrm{x}$ is faster than y ; $\mathrm{I}: \mathrm{x}$ is fitter than y ; $\mathrm{A}: \mathrm{x}$ is fatter than y)
IV. If D: x is a dog; O : x is owned by y ; j : Jeff; n : Nina, how many dogs does Jeff own, according to the following formulas? (be sure to add 'at least', 'at most', 'exactly')
14. $\exists x \exists y(D x \& D y \& O x j \& O y j)$
15. $\forall x(D x \supset(\sim O x j \vee x=n))$
16. $\forall x \forall y \forall z((D x \& D y \& D z) \supset((O x j \& O y j \& O z j) \supset(x=y \mathrm{v} x=z \vee y=z)))$
