This is an attempt at a schedule of topics for the course. However, I am immensely bad at keeping to schedules. You should take this rather as an indication of the order in which various topics will be discussed and work due. The first exam will happen at about the mid-term point of the course, and will cover whatever material we have done up to then. I expect it will happen in the middle of the vagueness material. The second exam will take place at the end of the course, and will cover the material from after the first exam.

We will first try to get a common background in elementary formal logic. You need not know very much detailed information, but you should have a knowledge of some of the major hallmarks. And since we’re going to talk a bit about translating from English to logic, you should know how this is done in classical first-order logic.

Texts: Lou Goble *The Blackwell Guide to Philosophical Logic* (PL)
Rosanna Keefe & Peter Smith *Vagueness: A Reader* (V)
Graham Priest *An Introduction to Non-Classical Logic* (NCL)

Topic I: Background to first-order logic. Read Goble’s *Introduction*, esp. pp.1-4. Read Hodges, Ch. 1 in PL, esp. pp. 9-32, but don’t commit to his specific axiomatic development on pp. 24ff, but instead just concentrate on the content of the theorems on pp. 26-31 and not their proofs. In connection with this, you might also look at the first two pages of Shapiro, Ch. 2 in PL. There is also a brief intro in NCL, pp. 1-4. Priest also introduces one style of semantic tableaux system; we will discuss tableaux throughout the course, but you don’t need to read his version exactly.

<at the end of this topic there will be a homework assignment>

Topic II: Many-valued (propositional) logic. Read Malinowski (Ch. 14 in PL). Some of this material is advanced, and I will be presenting a simplified version. I will mention some features of infinite-valued logic (“fuzzy logic”) in connection with this. NCL also has a chapter on many-valued logics (chapter 7), which is very nice and mentions many philosophical topics related to many-valued logic.

Topic III: Modal logic. Read Cresswell (Ch. 7 in PL). Since this is not a modal logic class, we will not study his proofs of completeness. You should just learn what the conditions for the “possible worlds” are, and what sort of things different modal logic systems can validate. In connection with this, you might look at the first page of Hilpinen (Ch.8 in PL), the first 4.5 pages of Meyer (Ch. 9 in PL), and the first 3.5 pages of Venema (Ch. 10 in PL). NCL also has three chapters on modal logic (Chapters 2-4), but Chapter 4 is about non-normal modal logics and we won’t discuss them. He also gives tableaux methods for modal logics, but I’ll present my own (somewhat different) version.

<at the end of this topic there will be a homework assignment>

Topic IV: Vagueness. Philosophical background is given in the Introduction (pp. 1-57) to V. It also contains arguments against many of the theories presented in the “readings” that
comprise the rest of the book. We want to look at modal logic theories of vagueness, many-valued theories of vagueness (with some discussion of fuzzy logic; fuzzy logic is also discussed NCL chapter 11), and at “supervaluations”. The classic supervaluation paper is Kit Fine (pp.119-150 in V), and is also discussed in NCL (Ch. 7, Section 10). Tye (pp. 281-293 in V) gives a three-valued approach to vagueness, Machina (pp. 174-203 in V) gives a much larger many-valued approach. Some of this material is discussed in the NCL Chapter 11. Williamson (pp. 265-280 in V) argues against any many-valued approach, and an article by Pelletier & Stainton will be passed out that argues against that. (But also, an article by Pelletier which argues against many-valued theories will also be passed out).

Topic V: Free logics. These are logics that allow for non-denoting names (“empty names”). Joe Lambert (Ch. 12 in PL) discusses a variety of free logics in a very short space. Lambert mentions definite descriptions on pp. 271-2, but we will talk in more depth about formal theories for definite descriptions – especially those that are alternatives to Bertrand Russell’s “elimination” of definite descriptions. Using many-valued logics as a way to handle empty names is mentioned in NCL (Ch. 7, section 8).

<at the end of this topic there will be a homework assignment>

Topic VI: Conditionals. The article by Edgington (Ch. 17 in PL) is a general introduction to all the theories, without, however, much logic. It is not clear how much time we will have to cover this topic, but perhaps we can look at pp. 280-283 of Mares & Meyer (Ch. 13 in PL) and the long discussion in NCL—or at least a part of it. [It consists of Chapter 1.6-1.10, Chapters 4, 5, 8, and 9. The latter two chapters overlap with the Mares & Meyer chapter.]