- Lecture Notes in

nal Symposium on-Programming. Proceedings,” : . . .
Girault and M. Paul. VI, 262 pages. 1984, : -

i ‘n
) . -
nd Toots for Computer Intagrated Manufaciuring, :) .
nn and U. Rembold. XVI, 528 pages. 1984. : 7

2, Feedback Shift Registers. I, 1-2, 14§ pages.

iternational Conference on Automated Deduction, '

ek 1, 898 pages 1954 Edited by G. Goos and J. Hartmanis

Machines: Decision Problems and Complexity.
i. Edited by E. Bérger. G. Hasenjaeger and
i pages. 1984, :

., Languages and Programming. Proceedings,
’aredaens. VIIl, 627 pages. 1984,

s of Data Types. Pracesdings, 1984. Edited by
Queen and G. Plotkin. VI, 381 pages. 1984.

M 84 Procesdings, 1984. Edited by . Fitch.

4
+ P-Functions and Boolean Matrix Factorization, | 2

4.)

ical Foundations of Computer Science 1984, i
Edited by M.P Chytii and V. Koubek. Xi, 581

ing Languages and Their Definition. Edited by
154 pages. 1984,

-1 Gognitive Ergonomics — Mind and Computers.

_ 8th International Conference
s T on Automated Deduction

/1o Multiply Matrices Faster. XI, 212 pages. 1984.

o4 pages, toge 1o eeanen 1980 Edted Oxford, England, July 27—August 1, 1986 -
Proceedings

ns of Software Technology and Thesretical
Praceedings, 1984. Edited by M. Joseph and
lil, 468 pages. 1984,

:8. Proceedings, 1985. Edited by K. Mehlhorn.
2

sh Project CIR Volume I The Wide Spectrum

I
i
|
2nd Annuai Symposium on Thearetical Aspects - i
I
i
the GIP Language Group. X, 275 pages. 1985. i

Networks: An Advanced Course. Proceedings,
lutchisen,). Mariani and D; Shepherd, VI, 497

:al Foundations of Software Development. Pro-
lume 1: Colloquium on rees in Algebra and
> 85). Edited by H. Enrig, C. Floyd, M. Nivat and
pages. 189856,

hods and Software Development. Freceedings,

oquium on Seftware Engineering (CSE). Edited Edited by Jbrg H. Siekmann
M. Nivatand J. Thatcher, XIV, 455 pages, 1885. .

thaghi, Time Series Package (TSPACK). 1, !)
e e ——

in Pelri Nets 1984. Edited by G. Rozenberg
of H. Genrich and G. Roucairal. VII, 467 pages.

1an, Paragon, XI, 876 pages. 185,

[U

, 3.P Ansart, G. Hommel, L.. Lampart, B. Liskoy, i
1. Schaeider, Distributed Systems. Edited by
jert. V), 873 pages. 1985, ;

A Survey of Verification Techniques for Parallef
jes. 19885,

Springer-Verlag

Berlin Heidelb’erg NewYork London Paris Tokyo

- THINKER
Francis Jeffry Pelletier
Departments of Philcscphy and Computing Science
University of Alberta
Edmonton, Alberta TeG 2EL
Canada

THINKER is an automatic theorem proving system which generates
proofs of theorems {including arguments with premises) in the natural
deduction format of Kalish & Montague {1964). The logic in which
THINKER operates is first-order predicate logic with identity (this is
an update from the report, Pelletier 1982). The theorem to be proved,
and any premises for the argument, are entered in a fully-parenthe-
sized form, and can have any wff composed of & {and), v (oxr), > (if-
then), 4 {not), = (if and only if), A (universal gquantifer} E (exist-
ential quantifier), - (identity}, variables, constants, and predicates
of any adicity. THINKER performs no pre-processing of formulas (eg.,
into ¢lause form) but instead operates directly on the natural form.

The natural deduction system allows for assumptions.to be made at
various places, and subproofs to be generated from these assumptions.
The proof which is generated is fully formatted (indented, with sub-
proofs displayved) and fully annotated {each line of the proof mentions
which previous line it comes from). Handling of the subprcoofs is the
trickiest part of the program, since once a subproof is complete, the
lines generated in the course of censtructing the subproof are no
longer available for use in the rest of the proof.

The user interface for THINKER includes interactive prompting
commands, various debugging facilities, a statistics cellector (to see,
for example, how many times certain ultimately unsuccessful strategies
were tried), a "unfinished proof®” examination mechanism, and a help
facility that allows the user to add new lines te a partial proof or
to suggest new subproofs to try. A post-processor is.available to
print out very tidy procfs on the Xercx 9700 printer.

THINKER has performed quite well on a wide variety of elementary
problems {see Pelletier 1986 for a sample). Its success is mostly due
+g its use of a natural deduction format (which allows one to parti-
tion antecedent lines into different types, depending upon what its
main connective is) and a heavy use of memory -to..'remember!. (by means
of hash tables) all formulas of all types that have already occurred -
in the proof. Thus, for a trivial example, if the current subgoal is
the formula P, a check will be made to see whether (among other
things) a formula (Q > P) occurs among the antecedent lines, and 1f so
whether also the formula Q does. THINKER does this simply by storing
the string {& > P) in a hash table (if any formula of that form is an
antecedent line). A pointer from this template tells whatthe actual
valuas © for each formula of that form that is
among the antecedent lines, what is the left side of the > . &8ince
this too will be a string, it can be guickly locked up to determine
whether it occurs in the antecedent lines. Templates are used for all
connectives and free variables. Identity is handled by keeping track
of eguivalence classes of variables. (A1l these continually chance
. due to new antecedent lines and completion of subproofs).

: Tﬁe@reason that the management of formulas is so efficient has to
- do-with the use of SPITBOL as the programming language. One merely

i needs to define each check as a SFITBOL pattern and use the SPITEQL

- TABLE facility. The use of strings, rather than lists or trees,

values of & these are - that is,

702

enables us to keep the advantages of the natural form (the advantages
in selecting a preoof strateqgy) while allowing fast access to the
"form" of various formulas {since we need not process any tricky data
structures). :

THINKER is currently available on VAX 780/UNIX and AMDAHL 5685/
MTS. Future extensions include the introduction of arbitrary func-
tions, the use of (pseudo) parallelism to generate subproofs, and
addiction of the lambda-calculus. This last is important since the
ultimate goal of the system is to he attached to a natural language
system to compute inferences and presuppositions. The NLU system
under development makes heavy use of the lambda calculus in its
representation of the logical form.

Pelletier, F.J. (1982) Completely Non-Clausal, Completely Heuristi-
cally Driven, Autcmatic Theorem Proving. Dept. Computing
Science, University of Alberta, Tech. Report TR82-7.

Pelletier, F.J. (1986) _"Séventy-Five Problems for Testing Automatic
Theorem Provers" Jour, Automated Reasoning {forthcoming).

