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HEURISTIC THEOREM PROVING!

Francis Jeffry Pelletier
Dan C. Wilson

ABSTRACT

Many people view the essential difference berween computer output
and human thinking as *‘blindly tollowing 2n algorithm versus
heuristically using and altering strategies.”” A computer program which
invokes heuristics is discussed and applied to the problem of producing
proofs in ordinary logic. The conclusion is twofold: our computer pro-

* gram performs significantly better than existing algorithmetic methods,
and it performs in a manner indistinguishable from the heuristics that
kumans use.

THEOREM PROVING AND THINKING

In the last twenty years it has been common to mark off human performance
from computer petformance in terms of heuristics versus algorithms. A compurer,
so it is claimed, blindly follows a humanly devised algorithm and therefore cannot
be counted rational, no matter what its performance. Humans, on the other hand,
have a variety of heuristics or strategies at their disposal and engage in goal-directed
thought by employing these strategies, so long as they appear to be leading toward
the goal; they switch to another strategy when the previous one appears not to be
succeeding. Now, the distinction between blind algorithms and heuristic straregics
seems to us not to be very sharp and clear; we think that they merge into one .
another, and that the real difference between them is a subjective impression of un-
sureness of success in the case of heuristics. But we shall not argue that here. In-
stead, we shall accept the perceived distinction and display a program which uses
exclusively what everyone would recognize as heuristic strategies.

The area where we intend to employ our heuristics is in theorem proving, We
should perhaps indicate why we think this is a good and imporeant testing place in
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which to use heuristic techniques. The first reason is simply that logic has, since
Aristotle, been considered one of the crucial areas that define rationality and think-
ing. Secondly, there are a variety of models of theorem proving (7e., systems of
fogic) available for use and their abstract properties are well-known. Thirdly, there
are a variety of compurter-based theorem provers around to which we may compare
ouzs. Finally, and maost importantly, the current srate of arrificial intelligence in-
vokes theorem proving in a wide range of tasks which are taken to simulate think-
ing. For example, natural-language-understanding systems—including data-base
retrieval and question-answering systems—all require a theorem prover to go from
“what is literally said’” to “*whar is meant by the speaker.”

It is well known that to understand a normal speaker, a lot of “‘inferencing’’ is re-
quired to take into account background information, mutually known intentions,
and what is likely to be meant in the current siruation. The currently believed best
way to handle this is to have a theorem prover take what is literally said, add it to

this knowledge base, and construct likely conclusions about what was meant on this

occasion. Also, current models of planning and action use theorem provers. Thus a
robot is ordered to move Box A to Location Z. To do so, our robot first tries to prove
that A is already at Z. When this proof fails, it inspects the proof to determine the
simplest position, Y, it could be in which (together with one of its primitive
movements) will allow it to prove that A is at Z. It then tries to prove that it is in
position Y. When this proof fails, it inspects the new proof to determine what is re-
quired to prove Y. This is continued until it can prove that some series of primitive
movements will get A to Z. And then it performs thart seties of movements.

The claim in arificial intelligence is that some similar procedure occurs when
humans are planning actions and understanding language. Thus it would seem to
be of paramount importance for research into thinking to be able to have a theorem
prover which operates in a2 manner akin to human theorem proving. And, as we in-

_dicated earlier, we think thar heuristic-based theorem proving provides the most
likely hope in this regard.

The subject of whar theorems can be proved in classical logic was pretty
thoroughly canvassed by Whitehead and Russell in 1910-1912; and while various
new and interesting theorems were discovered in the decades since, the truly ex-
citing work in logic has been done at the model-theoretic level, and not witéin the
logic itself. We therefore wish to emphasize that the present study of theorem prov-
ing is done with an eye toward discovering how people in general, when working
with abstract matters of logic, actually proceed in formulating a proof (and not an
investigation hoping to prové new theorems). We have another eye toward im-
plementing such a theorem prover within natural-language-undersianding systems
and within robotic-planning systems. In this regard, Feigenbaum and Feldman

{1963, p. 107) say:

The fascination with mechanical theorem proving. . .lies less with the end (the produc-
tion of theorems, perhaps new and important) than with the means (a thorough
understanding of the organization of information processing activity in mathematical
discovery). It is felc thar understanding these problem-solving processes is an important
step roward the programming of more complex, more general problem-solving processes
for a variety of intellectual tasks.

#

SYSTEMS OF LOGIC

In the abstract, systems of logic can be divided into three sorts: axiomatic,
“semantic,”’ and natural deduction. We wish to justify our choice of natural deduc-
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tion as appropriate, especially in light of the facis that the earliest theorem prover
was based on an axiomaric system and that almost all present theorem provers are
“semantic’’ in nature. To this end, we shall describe the three types in this section,
and In the next section poine out whar we take o be flaws in the first two types
when it comes to computer theorem proving.

An axiomatic system of logic takes certain formulae as “‘given’” (in the sense of
requiring no other justification), gives a set of ‘‘rules of inference” (methods of
transforming one or more formulae into another), and defines a proof as an
ordered (finite) set of formulae, each one of which is an axiom or follows from
previous (in the ordering) formulae by a rule of inference.

To give an example of a proof in a typical propositional axiomatic system, con-
sider the systen P1 of Church (1956). Included in the axioms are Al: (p—~(q—>p)),
A2: (s> (p=q) = {—>p)>{s—>q))); and the two rules of inference, MP: from (A—B)
and A, infer B; and Sub: from A, if % is a propositional variable in A, infer the
resule of replacing all occurrences of 4 in A by a farmula B. A proof of the theorem
(p—p) in this system would be

A2

L. A== ((s=p) =)
2. ()= (D> (>q) 1, Sub (¢ for p)
3. (= p= ()= p) 2, Sub (p for @)
4. (p~a>p)H~>((p—n—=(p~>p)) 3, Sub (p for s)
5. ((p~q=p)>(p=—>(p—p) 4, Sub (g for )
"6, (p{gph o Al
7. ((p~g—=(p~p) ' ' 5, 6MP
8. ((p—~(g=ph—={p—p) 7, Sub ((g—p) for @)
9. (p~p} 6, SMP

The extenston of the axiomatic method to the predicate calculus is accomplished by
adding further axioms and rules of inference.

““Sernantic’’ systems of logic are so-called because they attempt to mirror the in-
tended semantical interpretation into the system of logic itself. For the proposi-
tional logic, this intended semantical interpreration is just the truth table, and con-
sequently, to prove whether a formula A is a theorem or not, it is customaty in these
systems to introduce devices which enable us to find out whether the assumption
that A is 7oz a theorem would also require that some atomic sentence and its nega-
tion both be assigned Trueé. This is normally done by '‘breaking down’ the
formula <A into simpler and simpler components. Many of these methods can easi-
ly be represented by trees. Jeffrey (1967) has the following system of rules for tree
construction:

{A&B) (A/ AV \B) (A/—> \B) (A ‘-’\B) ——A
| |
A A B —A B A/ —A A
B B B

~(A & B) ~(AVB) —~(A— B) ~(A=B)
*«' ! |

—.A/ -\. B —A A A/ —\,A

—~B —B —B B

where the intuitive idea behind a rule is that we are interested in *‘ways the complex
formula might be true.”’ The definition of 2 proof of conclusion Cis: 7. —C is the
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root node, 2. if 2 rule of inference is applied to a formula B which occupies a node
of the tree, the result of the rule of inference is represented in every ‘‘uncancelled’”
branch that B dominates, 3. any branch which contains 2n atomic formula and also
its negarion is “‘cancefled’” by putting an “'x’* at the bottom of the branch, 4. Cisa
theorem if and only if every branch is cancelled. The proof of the formula (p->p) is
very simple in this systern. We pur —(p~>p} as the root node and use the rule for

—-(A—B):

— (PTP)
P
—p

X

A somewhat more interesting theorem is DeMorgan's (— (p~q) < (p & — q)),
which is proved:

“(={p—>q - {p& —q)

={p-q) = =1(p—>q)
—{p& —3) p& —q)
P P
—1q —q
/ N
-p g -p q
X X X X

It is quite clear here (as opposed to the axiomatic system) what the strategy is: we
assume the (alleged) theorem to be false, and break it down into simpler and
simpler components by the wruth-preserving rules (the branched formula is true if,
and only if, at least one of its sub-branches is true). Since the resulting formulae get
shorter and shorter, the method (in the propositional calculus) is guaranteed to
halt. ' '

In computerized theorem proving, the most commonly used method is *‘resolu-
tion’’—a variant of the semantic methods. Here (in the propositional logic case) we
negate the formula to be proved and represent it by its equivalent ‘ ‘clause form’* in
which the formula is converted to a conjuncrion of disjunctions of “‘literals’
{(=atomic formulae or theit negations), and each conjunct is called a clzwse. Each
clause (which is irself in disjunctive normal form) is weitten on 2 separate line and
the one rule of inference, “‘resolution,” is used. The rule is (in its simplest state-

ment):

AIVBIV...VPIV .. .VZ1
A2VB2V ...V =P1V ...V Z2

¥ AIVBIV ... VZIVA2ZVBIV .. . VZ2

where: each of the lines is in clause form and the conclusion {a new clause) has no
mention of P1 or its negation (it has been *‘resolved out”’). If the original formula
was a theorem, then eventually the method will yield a #ad/ resofvent —the* ‘empty
formula,”” 2 formula with no subformulae. (The rule is usually generalized to apply
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to an arbitrary number of premises at one swoop.) Clearly the resolution method is
semantic in nature: we are trying to discover whether the purported statement is
necessatily true by looking at ways its negation might be true. If none are found
{null resolvent), the negation can’t be true and so the original statement must be.

These semantic methods can be extended to the (non-decidable) predicate
calculus in various ways. Jeffrey (1967) adds branching rules for quantifiets, but
these rules are not effective in the sense that they needn’t ever be used again.
Another way would be to convert the formula into a Skolem normal form by 7. get-
ting the prencx normal form (all guantifiers have widest scope); 2. having every
variable bound by an existential quantifier which is 2. not in the scope of a univer-
sal quantifier is replaced by a name, 4. in the scope of a universal quantifier is
replaced by a (Skolem) function of the variable(s) mentioned by the universal quan-
tifier(s); and 3. dropping universal quantificrs. The resulting (non-quantified) for- -
mula can now be treated in various ways. We could apply the tree method of zbove,
or we could continue to use the resolution procedure by introducing a special
understanding of what variables can resolve against which and generate the null
resolvent. Even in the complex case of gquantifiers, it should be clear thar the
serategy s semantic: quantifiers are interpreted—existential quantifiers not in the
scope of 2 universal are replaced by a2 name (the thing in the model that the
sentence asserts the existence of), existential quantifiers in the scope of a universal
quantifier are replaced by a function of the things named in the model by the
universal quantifiers, and so on. Finally, we merely look to the possible co-truth of
the atomic formulae. - _

A narural deduction system is like the semantic systems and unlike the axiomatic
systems both because It has no unjustified sratements (axioms) and because it has a
large number of rules of inference; however, it is unlike the semantic systems in that
it does not attempt to ''break formulae down’’ into simple components and
cvaluate their possible co-truth. Rather, the rules of inference are supposed to cor-
respond to psychologically plausible modes of reasoning, A proof is a method of
breaking down a formula irito ‘'what you can assume’” and ‘‘whar still needs to be
proved,”’ together with methods to actually do some of the “‘proving.”” There are a
number of these natural deduction systems in the literature; we shall here present
(and later employ) the one found in Kalish & Montague (1964). For the proposi-

tional logic, the ruler of inference are:

A A and —-A (A&B) and (A &B)
A (RY; =—=A A (DN); A B (8
(A~ B) (A-B) A
A and A A -B B
(AVB) (BVA) (Ad)) B (MP); A (MT); (A&B) (Adj;
(AVB) (AVB) (A~ B)
—A  and B B A) (A< B) and (A< B)
B A {(MTP); (B< A) (CB); (A—=B) (B—~A) (BO

®

which abbreviations stand for, respectively R: Repetition, DN: Double Negation,
MP: Modus Ponens, MT: Modus Tollens, S: Simplification, ADj: Adjunction,
Add: Addition, MTP: Modul Tollendo Ponens, BC: Biconditional to Conditional,
CB: Conditionals to Biconditional. These are all taken to be psychologically plausi-
ble modes of reasoning. An #ntecedent line is defined as a line which is earlier in
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the proof and neither boxed nor containing an uncancelled **show’’ (both defined
below). A proof is defined as:

L
24.

2b.
2¢.

3.
4.

If A is a formula, then “‘Show A’ can occur as a line. (The “‘'show’ is
uncancelled. Intuitively we are setting the task of proving A.)
If ““‘Show A’’occurs as a line then—A can occur as the next line (*‘assume the

negation’’),
If ““Show — A’ occurs as a line, then A can occur as the next line. -
If “*‘Show (A—B)"" occurs as a line, then A can occur as the next line (**assume

the antecedent™’).
If C follows from antecedent lines by a rule of inference, then C may be entered

as the next line.
I the proof has a subpart which looks like
Show A
X1

Xn
and «. there are no uncancelled ‘‘Show’” among X1...Xn, and 4. either A oc-
curs unboxed (defined below) among X1...Xn, or else both C and —C occur
unboxed among X1.. .Xn, then

*Show A
X1

Xn
can be the next step in the proof (X1...Xn are now boxed — and thus are no

longer antecedent, and the ‘‘Show’” line is camcelled and now antecedent (in-
tuitively, the lines in the box constitute a proof of A).

If the proof has a subpart which Jooks like
Show (A—B)
X1

Fau ¥
and #. there.ate no uncancelled *‘Show’ among X1...Xn, and 4. B occurs un-
boxed among X1...Xn, then
*Show (A—B)
X1

Xn
may occur as the next step to the proof.

. The formula A is proved if it occurs unboxed in a proof and there are no un-

cancelled “‘Show’’ in the proof. (The method can be extended to arguments
with premises by allowing 2 premise to be entered anywhere in the proof.)
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This natural-deduction system is extended to the predicate calculus by adding
rules for Existential Instantiation, Universal Instantiation, Existential Generaliza.
tion, and another method of boxing and cancelling called universal detivation. The
system we shall exhibit below is of the full predicate calculus, and hence uses these
other quantifier rules also. We close this section with two shorr proofs to give a feel-
ing for how theorems might be proved using this system. First, the theorem {p~
> { =g = p)), which was the longest proof completed by the Logic Theorist (to
be described below).

1. :Show ((p~>q) - (- q—> —p)) _
2, b~q Assumption
3, {Show (- g— -p)

4. —q Assumption

Second, the theorem (p V — — — p) of which it has been proved that the Logic
Theorist cannot prove it. '

I ‘Show (pV = = —p)

2. -{pV == op) Assumption
3. 1Show —ip

4. p Assumption
7. - - —p B,DN

g. pV 4 = p) 7. Add

SOME REMARKS ABOUT PREVIOUS THEOREM PROVERS

The first theorem prover was the Logic Theorist of Newell, Simon, and Shaw
(1957; its latest incarnation is in Newell and Simon, 1972). It employed the ax-
iomatic system of Whitehead and Russell and was heuristic-based in the sense that
it made use of such procedures as “‘Is there an axiom, the consequent of which is a
substitution instance of what we’re trying to prove? Yes — try to prove the axiom's
antecedent;”’ (‘‘backward chaining’’), or “‘Are any of our current lines a substinu-
tion instance of the antecedent of an axiom? Yes — use MP*"; (““forward chain-
ing""), and so on. However, the Logic Theorist was not very successful in proving
theorems. We have already indicated above that it could not prove (p V. = —. = p)
and that, in fact, the longest theorem it could prove was the simple ((p - q -
(~+ g>— p)). Furthermore, its proofs, of the few it could prove, tended to be ex-
traordinarily inelegant. Part of the problem was the machine being used—ii had’
limited storage and these strategies required a very large amount of storage of possi-
ble “‘substitution instances’ of axioms and previously proved lines. We shall show
below how we have solved this storage problem. _

Another part of the problem was that the strategies employed were just too
simplistic to be taken seriously. But another, more important, part of the problem
is that the Logic Theorist used an axiomatic system. Almost every- petson (profes-
sional logician or student) finds axiomatic systems very difficult. If we want to mir-
ror actual logical abilities, we would do better to look at how we learn one of the
other versions of logic. Therefore, both on the grounds of its technical difficultics
and the grounds of its implausibility as a model of thinking, we reject axiomatic
systems.

We also reject the semantic systems. We have three reasons for this. The first is

the abstract, theoretical consideration that semantics just isn’t really logic, and it is
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people’s logical abilities we are concerned with. On this issue we quote from
Georgacarakos and Smith (1978: xiv):

In keeping with our aim of theoretical soundness, we have sharply distinguished be-
tween the semantical and the syntactical correlates of the logical concepts we study
throughout the text. We introduce the technique of tree construction s a semantical
device, the aim of which is to discover counterinterpretations for invalid argument
forms. Many authors regard trees as syntactical devices and of course in a sense they are
(they involve manipulation of symbols). However, the correct purpose of tree construc-
vion s semantical in that it is to be used as a device to find possible counterinterpreta-

tions.

The second reason is that the use of the semantical logics lends itself too easily to
methods which are beyond the ken of reasoning people (#7z.. resolution pro-
cedures). We wish to stick strictly to what ordinary people can actually know and
use. It is the unanimous voice of resolution theorists that their techniques are too
complex and time consuming for people to use. (Many writers claim this, but see
Chang and Lee 1973.) The third reason we reject semantic methods is technical.
The method used is, when not augmented by any heuristic search control, very inef-
ficient, time consuming, and storage consuming. We quote here from Kowalski

(1979, p. 163):

The search space determined by unrestricted application of the resolution rule is highly
redundant. Redundancy can be avoided, at the cost of flexibility, by restricting resolu-
tion to top-down of botzom up inference.

One might have to live with this unhappy state of affairs presented by these
semantic, resolution provers if there weren't any better method. One way to make
the method better is to contro} the search by certain heuristics. The mechanical
theorem-proving literature is rife with suggestions, such as ‘‘set of support,” “unit
preference,’”” *'putity,”’ efe., but it must be admitted that these improvements in
performance are at the expensc of even what tenuous link resolution provers may
have to human theorem proving. Two of these techniques ought to be mentioned
here, nonetheless, since it is our aim to show that our program performs berter than
the bese resolution prover (which uses one of these methods), and it does so because
it more fully implements somie of the ideas and techniques in the other.

Kowalski (1974, 1979) is the most fully described “‘connection-graph’’ theorem
prover. The idea behind 2 connection-graph strategy is to first, prior to trying to
prove anything by resolution, lay out the possible ‘‘resolvings out’’ asa graph. Thus
suppose our clauses are: :

plVp2Vp3
—~p3Vpd
—~pdV pl
We draw connections between the literals which might resolve out, thus:
plVp2Vp3
-p3Vv pli
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Any clause which contains a literal that is unconnecred cannot possibly lead to the
derivarion of the null clause, and so is deleted, along with any of its connections.
So, in the above example, we delete the first clause and its connections, leaving:

- p3Vpd
—+pd V- —pl

But these too now have unconnected literals and thus ate to be deleted. If there
were no other clauses, we would know prior to starting the resolution portion of an
attempted proof that it is not a theorem and hence we would not start. Using this
technique, we get a theorem prover which, in a large number of cases, performs
better than the usual resolution provers. The most advanced resolution prover we
know of uses this connection-graph technique: it is that of J. Sickmann and his
associates at the Universitit Karlsruhe. However, even it is unable to show the
following (predicate logic) argument as valid. (These remarks and the following
argument are due to Len K. Schubert who presented this argument to Sickmann in
1978. We do not know the present status of the Karlsruhe theorem prover.)

Every animal either likes to eat all plants or all animals much smaller than irself thar like
to eat some plants. Wolves, foxes, birds, caterpillars, and snails are animals, and there
are some of each of them.-Also there are some graing, and grains are plants. Carerpillars. -
and snails are much smaller than birds, which are much smaller than foxes, which are in
turn much smaller than wolves. Wolves do not like to eat foxes or grains, while birds like
to eat caterpillars but not snails. Caterpillars and snails like to eat some plants. Therefore
there is an animal thar likes to eat a grain-eating animal.

(In passing here, we might point out that resolution provers require input in clause
form — skolem normal form and the result in conjunctive normal form. As the
above example demonstrates, it is not always a trivial rask to transform ordinary
language argumentation into clause form; yet when resolution theorists talk about
the efficiency of their programs, they rarely mention the added effort required to
massage the natural data into suitable input. Qur theorem prover will accept zny
well-formed formula of first-order predicate logic.)

Bledsoe (1971) took what we think was a giant step forward in mechanical
theorem proving when he introduced *'splitting and reduction’” techniques. These
techniques are the basis for a human-like natural deduction system: they give
overall strategies for proving theorems, which strategies depend upon the “‘main
connective’’ of the formula to be proved. Thus for example, the strategy for proving
2 conjunction is to ptove each of its conjuncts separately (rather than a resolution
procedure’s attempt to prove that the disjunction of the negations of each conjunct
leads to the null resolvent). The strategy for proving 2 biconditional is to prove each
conditional separately; the strategy for proving 4 conditional is to assume the
antecedent true and attemprt to prove the consequent — and so on. In 1971, Bled-
soe used some of these techniques to *‘simplify’’ the formula to be proved, but
then the final step for each subproblem was to do a resolution proof. We think, as
in Bledsoe e# @/(1972), that this takes away a lot of the “'human qualities” from the
theofem prover. In this latter article, the resolution subsection was replaced by a
procedure called IMPLY which used “‘forward chaining” and *‘backward chain-
ing.”” in addition to some of the more usual resolution techniques. We have already
mentioned above that we think forward and backward chaining by themselves are
not very likely candidates for theorem proving because they require an immense
amount of storage. We find furthermore that the mixture of resolution procedures
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still with it takes us away from human-otiented theorem proving. Finally, it appears
that the 1972 system cannot prove that: :

{(p & (q—=n)—s)
is equivalent to:
({(—=pV (@Vs) &{=pV (—rVsh)

which ours does, easily.

We think that the flaw with the Bledsoe systems is that the heuristic rechniques
were not followed far enough. We have found. with the complete use of the
heuristics described below, that we could prove 2!l theorems of the propositional
logic and first-order predicate logic (without function symbols other than constants
and without identify — two areas we have not yet tried to implement) found in
Kalish and Montague (1964) and Thomason (1972). In addition, we can prove some
theorems which are not in them, but which have cropped up in the mechanical
theorem proving literature — such as (p V .~ — - p) from the Logic Theorist, the
Schuberr argument from connection-graph resolution, and the example just given
from Bledsoe.

THINKER: A HEURISTIC-BASED THEOREM PROVER

We wish now to describe THINKER. We can divide the description into two
components: the heuristics employed and the implementation of them. We shall
skip lightly over the latter, for we think it of little interest to know thar, ¢.£., 2
doubly-linked circular list of all antecedent formulae with a *~' as main connective
was kept. Burt there are some features of the implementartion which desetve to be
mentioned, since they show how we have solved some of the problems of earlier
theorem provers. First among these is that we used a version of SNOBOL (namely
SPITBOL) rather than the more usual LISP-based languages. SNOBOL'’s basic
operation is pattern matching, where these patterns can be as complex as one can
desctibe (e.g., recursive patterns). We are thus able to directly compare, for exam-
ple, whether formula A is the negation of formula B by simply asking:

A(—" B)

The blank after A is “‘match the patrern following’’ (which is what is in the paren-
theses) and the blank inside the parentheses indicates that one is to pre-concatenate
a ‘—’ to the pattern B. This is both 4. in keeping with our syntactic view of logic as
manipulation of symbols rather than with semantic strucrures, and 4. in accordance
with our intuitive psychological position that people attend to these patterns when
constructing logical proofs.

As a side benefit, we get to store our formulae as strings, and this is less consum-
ing than storing tree-like structures, as other provers usually do. (We could expand
further on this, especially point 4., indicating how our patterns are essentially akin
to human thought: ‘‘Ignore everything except to notice that the formula is a condi-
tional that is universally quantified. Ignore the particular variable of quantification
and only attend to the rest of the structure of the antecedent to sce whether any
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other line has this same strucrure when its variable is similarly ignored. Ezc.’’ But
we will not dwell on this here.) '

Another feature of SNOBOL is that it has a primitive data structure called a
TABLE, which is like an ARRAY, except we can access any element by using a stting
rather than an integer as an index. Thus, if we wish to know whether a cerrain for-
mula is an antecedent line, we merely use that formula as an index and check direct-
ly. Again, this is much more efficient than the usual sequential search, even when
the latter is augmented by graph-theotetic features; and it allows us to cut down our
storage requirements.

One final feature should be mentioned here, and thar is our use of TEMPLATES.
When a line is added to the proof (when it becomes an antecedent line) we store in-
formation as to what type of line it is. If, for example, it is the conditional (A—B),
we store these two pieces of information: 7. it is a conditional with antecedent A; 2.
it is a conditional with consequent B, These arc stored as the strings (A~ @) and
(@—B), where @ is a kind of metavariable indicating “‘some subformula or
other.”’ Since these are strings, we can use all the apparatus mentioned above about
TABLES to access these ‘‘metaformulae.”” As an example, if we are trying to prove
B, we might look to this TEMPLATE table, directly accessing by means of the string
“(@—B)’, to see if there is such a formula type in the antecedent lines. The in-
formation in this table is what formula @ is; and we therefore know exactly what
this conditional in the Antecedent Lines TABLE (this table is called ANTELINES)
is: so we can directly see whether the formula @ is also in ANTELINES. it is, we
perform a MP and add B to the ANTELINES, which constitutes a proof of the for-
mula to be shown. It is easy to see that all this direct accessing solves the problems
which have plagued the earlier theotem provers from the time of the Logic Theorist.
Indeed, we think this breakthrough is one of the most important innovations of
THINKER. _ _

Having said that much about the implementation of THINKER, let us now turn
to the heuristics involved. In fact, the heuristics are excremely simple and can be
quickly described. What is surprising is that these simple heuristics, together with
the implemention described above, will prove all that it does.

A Kalish and Montague proof has two structurally distiner parts to it. First is a
stack of goals (formulae to be proved: the “‘show’’ lines detailed above) and second
is 2 sequence of antecedent lines. We are always working at proving the most recent-
ly added goal, by adding more and more ANTELINES. When that goal is proved, it
becomes an ANTELINE (= ‘‘cancelled””) and all lines which had been added to
ANTELINE after the goal was added to the goal stack get deleted (= “‘boxed™).
When the first-to-be-added goal becomes antecedent, the proof is finished. So,
when a theorem to be proved is entered, it becomes the first goal; since there are no
ANTELINES to work with, it cannot be proved yet. THINKER then, on the basis of
the theorem’s main connective, decides what to do. Its choices are 2. make an
assumption (which becomes an ANTELINE), or 4. add other goals. If the main con-
nective is ‘&’, “=>', or a universal quantifier, it will add a more simple goal and
recursively call the whole set of heuristics on this new goal. When this simpler goal
is proved, it uses it to prove the original goal. (These are Bledsoe’s “splitting
heuristics.””) Otherwise it makes an assumption: if the main connective is ‘7, it
assumes the antecedent; otherwise it assumes the negation. (Some of these are em-
bodiments of Bledsoe’s “reduction heuristics.””) This is how proofs ger started.
From this point on, it uses the following heuristics.

7. If there are no antecedent lines (see & of last paragraph), it reapplies the *‘split-
ting and reduction’’ procedure. :

2. ONESTEP(X) checks whether there is a rule of inference which uses X (some par-
ticular antecedent line), one application of which will prove the most recent




248 F. ]. Pelletier and D. C. Wilson

goal. This is rather simple to implement, since there are bur a small number of
rules of inference, and their working depends only on the structure of X and the
most recent goal. Every time we add an ANTELINE to the proof, we call
QONESTEP(X); if it succeeds, we ‘cancel’’ the most recent goal and *‘box.”’

3. SIMPLEPROOF(X) checks whether there are any two ANTELINES which, if one
rile of inference were applied to them, would allow us to be able to add X (a
particular formula we want to have, but not necessarily the most recent goal) as
an ANTELINE. This is simple to do, since the ‘‘one application of a rule’’ ap-
plied to ANTELINES to yicld X makes a rather limited search.

4, TRYRULES is a “‘blind’” procedure which attempts to apply the propositional
rules of inference and existential instantiation 10 ANTELINES. Each time a line
X is added by this, ONESTEP(X) is called, which is one way to terminate
TRYRULES. Another way to terminate it is if an ANTELINE is added to which
heuristic 5 is applicable. Of course, TRYRULES and SIMPLEPROOF add lines to
which TRYRULES is again applicable.

5. TRYNEGFLA is a rather clever strategy which — when more direct approaches
fail — will search ANTELINES for an occurzence of the negafion of a conditional
and add the unnegated conditional to the goals. (It also looks for negations of
disjuncrions and adds one of the disjuncts to the goals; for negations of bicondi-
tionals, and negations of conjunctions. It then adds appropriate goals.) If this is
successfully proved, the resulting contradiction will allow us to ‘‘cancel’” the
most recent goal.

6. TRYCHAINING: When other strategies fail, we look for a conditional in
ANTELINES for which we do not have the consequent. We add, as a goal, the
antecedent of the conditional. (If successful, we can perform a MP we couldn’t
before, so we can again TRYRULES). If this fails, and the negation of the antece-
dent isn’t in ANTELINES, we try to add the negation of the consequent asa goai
{to do a MT). A similar strategy applies to disjunctions and MTP.

7. HELP. When THINKER fails, either because the formula to be proved is not a
theorem or because its heuristics are inadequate to prove it, it displays the proof
as thus far constructed and requests the user to enter another line (either an
ANTELINE or a new goal). It adds this to the proof with an appropriate annota-
tion, and once again attempts the proof. '

8. PROCF is the overall monitor of these other heuristics. It adds goals, calls the
lower level heuristics as necessary, and recussively calls itself as new goals are add-

ed.

AN EXAMPLE

We give here 2 moderately simple, propositional talculus example which il-
lustrates how THINKER works.
The example is to show the equivalence between disjunction and the conditional:
((P Q)<*(— P—Q)). This is put on the goal stack. Since it is a biconditional,
OF adds a condirional to the goals: ((PvQ)}—(—= P~Q)), and calls itself recur-
swcly. Since this is a conditional, it assumes ‘(PvQ)’ and asks whether
ONESTFEP('(PvQ)") will prove the most recent goal. The answer is no, so it asks
whether SIMPLEPROOF('( — P—Q)’). Again no, so it-adds ‘(= P~Q)’ as a goal,
recursively calls itself, and assumes “— P’. It now calls ONESTEP(' = P’) to see
whether ‘(= P—>Q)’ is derivable from the ANTELINES. The answer is no, so it calls
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SIMPLEPROOF(*Q’). This succeeds {from the ANTELINES ‘(PvQQ)’ and ‘ =P’ by
MTP) and so it adds ‘Q" to ANTELINES, and then nortices it can cancel the
(- P=>Q) goal. So it does (and deleres the * ~ P° ANTELINE), thus ending that
recursive PROOF call. But this makes ((PvQ)—( = P—=Q)) be proved, so it cancels
that goal (and deletes the (PvQQ) ANTELINE). PROOF then decides thar to prove
the original goal, it needs to prove ({ = P—~Q)—(FvQ)), so this is added to the
goals. PROOF is recursively called and assumes (= P~>Q). ONESTEP{‘(— P~Q)")
fails, as does SIMPLEPROOF(*(PvQ))"). So ‘(PvQ)' is added to the goals, and
PROOF called recursively. It assumes ‘—~{(PvQ)’. At this stage the proof looks like:

1. Show (PV Q)+ (P—= Q)
2, *Show (PV Q) =~ (=P = Q))
3. PVQ Assume
4. 1Show ( =P = Q)
i —P Assume
6. Q 3, SMTP
7 Show ((~P~Q)~> (PV Q)
8. (—P=Q) Assume
9 Show PV Q)
10, -(PV Q) Assume

No rules of inference apply to our three ANTELINES (#2, 8, 10). PROOF notices
that line 10 is the negation of a disjunction and so calls TRYNEGFLA, which adds
‘P’ as a goal and calls PROOT recursively, * =P’ is assumed, and a MP is pcrformcd
with the lines 8 and 12, yielding 'Q’. ONESTEP('Q’) is called and succeeds, since
by doing ADD on it, we generate a contradiction and hence can cancel our most re-
cent goal. Having proved P and thus adding it to ANTELINES, PROOF notes that
ONESTEP(‘P’") allows us to prove the most recent goal (by ADD). But this most re-

cent goal, ‘(PvQ)’, was the consequent of the previous goal, and so that goal too is
proved. We are now on the topmost recursion, trying to prove line 1, and we have
two ANTELINES (#2, 7). We apply the rule CB to give us the final line #17, which
allows us to cancel line 1, finish and print out the proof:

1. tShow (P V Q) < (=P ~=Q))

2. *Show (PV Q) ~ (=P~ Q)

3. PV Assume

4. tShow (2P - Q)

3. —P Assume

6. Q 3, SMTP

7. *Show (=P -Q)= PV QD

8. (=P —=0Q) Assume

9. iShow (PV Q)
10. PV Q) Assume
11 4 *Show P
12. —P Assumne
13, Q 8, 12MP
14, {(FPVQ 13, Add
13, ~PVQ) I0,R
16. PV 11, Add
17. {(PVQ) = (=PVQ) 2, 7CB
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CONCLUSION

While this example proof is rather simple, the heuristics employed are powerful.
We think it surprising that with this meager set of heuristics, THINKER performs
its task so well. Its success should encourage others to build natural-language-
understanding systems and robotic-planning systems which incorporate similar
heuristics. We hope that THINKER's success doesn’t merely make critics say that
heuristic theorem proving isn’t “‘real’’ thinking, or that these aren’t ‘‘real”
heuristics. Anyone who tends in this direction might consider whether they think

people do this any differently.
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