Crossmodal identification

Gemma A. Calvert, Michael J. Brammer and Susan D. Iversen

Everyday experience involves the continuous integration of information from multiple sensory inputs. Such crossmodal interactions are advantageous since the combined action of different sensory cues can provide information unavailable from their individual operation, reducing perceptual ambiguity and enhancing responsiveness. The behavioural consequences of such multimodal processes and their putative neural mechanisms have been investigated extensively with respect to orienting behaviour and, to a lesser extent, the crossmodal coordination of spatial attention. These operations are concerned mainly with the determination of stimulus location. However, information from different sensory streams can also be combined to assist stimulus identification. Psychophysical and physiological data indicate that these two crossmodal processes are subject to different temporal and spatial constraints both at the behavioural and neuronal level and involve the participation of distinct neural substrates. Here we review the evidence for such a dissociation and discuss recent neurophysiological, neuroanatomical and neuroimaging findings that shed light on the mechanisms underlying crossmodal identification, with specific reference to audio-visual speech perception.

Evolution has furnished humans with several different senses, each tuned to a distinct form of energy and providing a unique window through which to experience the environment. The possession of multiple sensory systems provides considerable behavioural flexibility since input from one modality can substitute for another under circumstances of specific sensory deprivation. In darkness, for example, auditory and tactile cues might supplant visual information. Such polysensory deprivation. In darkness, for example, auditory and tactile cues might supplant visual information. Such polysensory deprivation. In darkness, for example, auditory and tactile cues might supplant visual information. Such polysensory deprivation. In darkness, for example, auditory and tactile cues might supplant visual information. Such polysensory deprivation. In darkness, for example, auditory and tactile cues might supplant visual information. Such polysensory deprivation. In darkness, for example, auditory and tactile cues might supplant visual information. Such polysensory deprivation. In darkness, for example, auditory and tactile cues might supplant visual information. Such polysensory deprivation. In darkness, for example, auditory and tactile cues might supplant visual information. Such polysensory deprivation. In darkness, for example, auditory and tactile cues might supplant visual information. Such polysensory deprivation. In darkness, for example, auditory and tactile cues might supplant visual information. Such polysensory deprivation. In darkness, for example, auditory and tactile cues might supplant visual information. Such polysensory deprivation. In darkness, for example, auditory and tactile cues might supplant visual information. Such polysensory deprivation. In darkness, for example, auditory and tactile cues might supplant visual information. Such polysensory deprivation. In darkness, for example, auditory and tactile cues might supplant visual information. Such polysensory deprivation. In darkness, for example, auditory and tactile cues might supplant visual information. Such polysensory deprivation. In darkness, for example, auditory and tactile cues might supplant visual information. Such polysensory deprivation. In darkness, for example, auditory and tactile cues might supplant visual information. Such polysensory deprivation. In darkness, for example, auditory and tactile cues might supplant visual information. Such polysensory deprivation. In darkness, for example, auditory and tactile cues might supplant visual information. Such polysensory deprivation. In darkness, for example, auditory and tactile cues might supplant visual information. Such polysensory deprivation. In darkness, for example, auditory and tactile cues might supplant visual information. Such polysensory deprivation. In darkness, for example, auditory and tactile cues might supplant visual information. Such polysensory deprivation. In darkness, for example, auditory and tactile cues might supplant visual information. Such polysensory deprivation. In darkness, for example, auditory and tactile cues might supplant visual information. Such polysensory deprivation. In darkness, for example, auditory and tactile cues might supplant visual information. Such polysensory deprivation. In darkness, for example, auditory and tactile cues might supplant visual information. Such polysensory deprivation. In darkness, for example, auditory and tactile cues might supplant visual information. Such polysensory deprivation. In darkness, for example, auditory and tactile cues might supplant visual information. Such polysensory deprivation. In darkness, for example, auditory and tactile cues might supplant visual information. Such polysensory deprivation. In darkness, for example, auditory and tactile cues might supplant visual information. Such polysensory deprivation. In darkness, for example, auditory and tactile cues might supplant visual information. Such polysensory deprivation. In darkness, for example, auditory and tactile cues might supplant visual information. Such polysensory deprivation. In darkness, for example, auditory and tactile cues might supplant visual information. Such polysensory deprivation. In darkness, for example, auditory and tactile cues might supplant visual information. Such polysensory deprivation. In darkness, for example, auditory and tactile cues might supplant visual information. Such polysensory deprivation. In darkness, for example, auditory and tactile cues might supplant visual information. Such polysensory deprivation. In darkness, for example, auditory and tactile cues might supplant visual information. Such polysensory deprivation. In darkness, for example, auditory and tactile cues might supplant visual information. Such polysensory deprivation. In darkness, for example, auditory and tactile cues might supplant visual information. Such polysensory deprivation. In darkness, for example, auditory and tactile cues might supplant visual information. Such polysensory deprivation. In darkness, for example, auditory and tactile cues might supplant visual information. Such polysensory deprivation. In darkness, for example, auditory and tactile cues might supplant visual information. Such polysensory deprivation. In darkness, for example, auditory and tactile cues might supplant visual information. Such polysensory deprivation. In darkness, for example, auditory and tactile cues might supplant visual information. Such polysensory deprivation. In darkness, for example, auditory and tactile cues might supplant visual information. Such polysensory deprivation. In darkness, for example, auditory and tactile cues might supplant visual information. Such polysensory deprivation. In darkness, for example, auditory and tactile cues might supplant visual information. Such polysensory deprivation. In darkness, for example, auditory and tactile cues might supplant visual information. Such polysensory deprivation. In darkness, for example, auditory and tactile cues might supplant visual information.
The assemblage of information across the senses also plays an important role in the perception of stimulus identity. For example, in noisy conditions, combining audible speech signals with the visible evidence of articulation (i.e. the accompanying lip and mouth movements) can improve comprehension to a degree equivalent to altering the acoustic signal-to-noise ratio by 15–20 decibels (Ref. 8).

That such multisensory interactions are also capable of modifying the perceptual outcome is clearly illustrated by the McGurk effect. When an audible syllable (e.g. ‘ba’) is dubbed onto videotape of a speaker mouthing a different syllable (e.g. ‘ga’) subjects typically report ‘hearing’ another syllable (usually ‘da’). Frequently, the perceived syllable represents some form of combination of the two sensory inputs. Such intersensory effects on event identification have also been shown to extend to judgements of non-speech stimuli, specifically while watching and listening to the playing of stringed instruments (Ref. 5). Although less striking than the effect observed with conflicting audio–visual consonant–vowel (CV) combinations (typically employed during McGurk demonstrations), the intermodal influence was reportedly comparable to that elicited during the presentation of conflicting audio–visual vowels (Ref. 12). Whilst further research is clearly necessary to determine whether the crossmodal mechanisms involved in the integration of speech and non-speech stimuli display important differences, such findings encourage the view that the critical distinction in cross-sensory interactions, but not identification, might be dependent on the initial onset or spatial location of the auditory and visual inputs.

The fact that the ventriloquist’s illusion and the McGurk effect both arise during the combination of auditory and visual inputs does not imply that they share common neural mechanisms or sites of sensory integration. Indeed, psycho-physical studies that have explicitly compared the conditions for multisensory integration by exploiting these two artificially induced conflict phenomena have indicated that they are actually subject to rather different cognitive constraints (Ref. 5). For example, judgements about stimulus location are consistently modified as the spatial disparity between the two inputs is increased. By contrast, spatial separation of the auditory and visual stimuli by up to 38 deg has little impact on the McGurk effect (Ref. 21). Furthermore, whilst desynchronisation of the auditory and visual input has been shown to have deleterious effects on the ventriloquist’s illusion (Ref. 8), the McGurk effect can still be elicited even when the auditory stimulus lags the visual input by up to 180 ms (Refs 21, 22). Recent findings further suggest that the effect of temporal displacement on crossmodal (audio–visual) localization, but not identification, might be dependent on the nature of the stimuli. These discrepancies in spatial and temporal parameters required for the two processes of auditory–visual integration could reflect different underlying rules for stimulus combination at the neural level. Indeed, such a distinction between the integration of information for stimulus location (‘where’) and stimulus identification (‘what’) might parallel that described for the visual processing of information relating to object position and identity, the so-called dorsal and ventral visual streams (Ref. 23).

In contrast to the amount of published work on the neural mechanisms involved in the crossmodal integration of spatial information (see Ref. 25), comparatively little is known about the nature and location of the mechanisms underlying the cross-sensory integration of inputs for the purposes of object and pattern recognition. Furthermore, whilst behavioural attempts to delineate the multimodal processes involved in localization and identification have predominantly involved direct comparisons of audio–visual combinations, research on the neural basis of crossmodal spatial interactions has been preoccupied with the integration of visual, tactile and proprioceptive information. Such is the current state of knowledge in the field of crossmodal processing that a complete comparison between all sensory combinations at every level of analysis is clearly untenable. In this review, we will consider neurophysiological, neuropsychological and neuroimaging findings that might elucidate the mechanisms underlying crossmodal identification (making comparisons with data on crossmodal localization where appropriate), focusing in particular on the integration of auditory and visual speech. Nevertheless, many of the principles discussed might be relevant to the crossmodal integration of other stimulus features, such as intensity and duration, and various combinations of sensory inputs across the different modalities (for a comprehensive review of intersensory effects, see Ref. 26).

What determines integration?

For two or more sensory inputs to be perceived as relating to a single object or event, some point of commonality must be detected between them. Across all combinations of sensory modalities, temporal and spatial proximity are clearly major determinants for co-registration (Ref. 27). However, the relative importance of these factors might differ depending on the purpose for which these inputs are combined and the specific sensory streams being integrated. Another factor that could determine integration is the information content of the different sensory inputs. For stimuli of low information content (e.g. a short light flash and a brief burst of sound) there might be little shared information but their simultaneous onset. Consequently, if the two sensory inputs are even slightly displaced in time, binding is often precluded. For information-rich stimuli, especially those with complex temporal microstructure, simultaneous onset or spatial contiguity might be less critical for integration of the inputs to occur. Instead, time-varying similarities in the patterning of information might prove a more salient feature for binding. For example, Summerfield (Ref. 28) has proposed that heard and seen speech is possibly bound by shared temporal frequency and amplitude features, even though the nature of the information received in each modality is different (e.g. audible changes in the oral area are correlated with the amplitude and formant frequencies detected in acoustic speech input). These properties of speech could explain why integration persists despite slight disparities in the initial onset or spatial location of the auditory and visual inputs (see above).

Putative neural mechanisms

Irrespective of the sensory features that determine binding during any particular crossmodal combination, it is likely that the different sensory streams must ultimately gain

Calvert et al. – Crossmodal identification

access to the same neurons (although see Massaro[30] for a discussion of integration by temporal synchrony). Indeed, electrophysiological studies have now identified many areas in the mammalian brain (see below) where the different sensory streams converge onto individual neurons responsive to stimulation in more than one modality, so-called ‘multimodal’ neurons. The rules governing multisensory integration have been investigated predominantly in deep layers of the superior colliculus of the cat,[1] guinea pig[31] and primate[32,33] where multimodal cells are numerous. Although predominantly involved in the control of attention, localization and orientation to sensory stimuli, it is likely that some general principles of multimodal integration observed in the superior colliculus[34,35] might extend to the crossmodal integration of identity information. For example, the supraadditive enhancement of every measurable characteristic of cellular responsiveness in the superior colliculus to multimodal inputs (response reliability, number of impulses evoked, peak impulse frequency and duration of the discharge train) closely resembles the gain observed at the behavioural level when visible speech cues are combined with the synchronous auditory speech information (see Box 1).

Box 1. Enhancement effects of multimodal integration in brain and behaviour

Combining information from different sensory inputs can enhance detection and orientation behaviours. In a study examining the contribution of auditory and visual cues to speech perception, Risberg and Lubker[36] found that the effect on comprehension of integrating these different sensory channels was supraadditive. Figure A shows the mean results from five subjects when they were either listening to unfamiliar sentences that had been low-pass filtered (thus retaining only the fundamental frequency of the female voice used – around 180 Hz), or lip-reading the same stimuli in the absence of sound. During concurrent presentation of these cues, it can be seen that the percentage of words correctly perceived was substantially enhanced.

Such supraadditive effects on behaviour have also been shown to characterize the response of multimodal neurons to multisensory stimuli. Figure B illustrates the evoked responses of a single neuron in the cat superior colliculus to visual (V), auditory (A) and audio–visual (VA) stimulation. Visual or auditory stimulation alone produced only weak or unreliable responses but combined stimulation increased the number of impulses detected by 1207% (from Ref. b).

Together these studies illustrate that the neuron enhancement elicited by multimodal inputs at the behavioural level appears to have a demonstrable physiological correlate. Such brain–behaviour relationships are known to characterize the temporal and spatial rules governing integration (see main text for further discussion).

References

Fig. Comparison of multimodal effects at behavioural and neuronal levels. (A) The percentage of correctly perceived words when subjects listened to low-pass speech (left), lip-read the same stimuli without hearing any sound (centre), and with both auditory and visual presentation (right). Modified from Ref. a. (B) Evoked responses of a single cat superior colliculus neuron to visual (V), auditory (A) and both visual and auditory (VA) stimuli. (Reproduced, with permission, from Ref. b.)
non-spatial aspects of crossmodal integration in the cerebral cortex (as illustrated by the relative insensitivity of the McGurk effect to spatial separation of the auditory and visual inputs) than is required by the orientation and localization functions mediated (at least in part) by the superior colliculus.

Neuroanatomical sites of multimodal integration

Anatomical, neurophysiological and behavioural studies in non-human primates (see Ref. 39 for a review), together with lesion and functional neuroimaging studies in humans40,41, have identified several brain regions putatively involved in multimodal integration. These nominal ‘heteromodal’ regions have been defined largely on the basis of several shared properties: they receive convergent inputs from more than one unimodal area; their constituent neurons respond to stimulation in more than one modality (or if sensory-specific, are closely intermixed with neurons responsive to a different modality); and lesions to these areas in humans can result in multimodal behavioural deficits.

How these regions actually participate in crossmodal processing is much less clear. Indeed, relevant ablations in monkeys have typically failed to produce deficits in the crossmodal transfer or masking of information (see Ref. 42 for a review). Mesulam43,44 has suggested that while heteromodal cortex could ensure the binding of modality-specific information into multimodal representations, it might not be the repository of this information. Instead, heteromodal ‘nodes’ could act as critical gateways for the encoding and retrieval of knowledge but storage of the sensory-specific attributes of a semantic representation (i.e. the sound of a car; the texture of its fur) might reside in the unimodal sensory cortices in which they were initially perceived. In this way, the constituent and qualitatively distinct sensory attributes of a representation could be retained during retrieval. In sum, while heteromodal cortices might act as convenient points of integration between the senses, the perceptual consequences of these multimodal interactions could be additionally realized in the relevant unimodal cortices.

Although heteromodal regions have been determined with most confidence in monkeys (see Ref. 45 for review), homologous regions have also been identified in man46,49. These are thought to include parts of prefrontal cortex, posterior parietal cortex (posterior Brodmann’s area (BA) 7; BA 39, BA 40) and regions within lateral temporal cortex extending into the depths of the superior temporal sulcus (areas within BA 37, BA 21). Outside the neocortex, putatively heteromodal areas include the posterior insula, the claustrum, the superior colliculus, portions of the parahippocampal gyrus (parts of BA 35, 36), the amygdaloid complex, the rhinal cortex and the suprageniculate and medial pulvinar of the thalamus.

The specific involvement of these areas in multimodal integration will inevitably depend on the precise combination of sensory inputs and the purpose for which they are integrated. One potential site of convergence for auditory and visual speech cues is the cortex in the superior temporal sulcus (STS). This area has been shown in monkeys to receive inputs from auditory association cortex (BA 42/22) and from the ventral and dorsal visual brain areas concerned with the processing of form and motion47. Although analogies between humans and non-human primates are clearly problematic in the context of speech, lesions close to this area in humans have long been linked with receptive aphasia49. In contrast, different areas have been implicated in the integration of information relating to stimulus location, including primarily the superior colliculus and posterior parietal cortex46.

Insights from functional neuroimaging

Modern neuroimaging techniques have now made it possible to investigate multimodal processes in humans. Functional magnetic resonance imaging (fMRI) permits the identification of brain areas showing task-related cerebral activation39,42. Using this technique, researchers have identified the brain regions involved in silent lip-reading in normal hearing subjects by comparison with those activated during normal audio–visual speech perception. Clearly, direct comparison of bimodal and unimodal speech perception would have precluded the detection of areas involved in both processes. Silent lip-reading was first shown to activate, in addition to visual association cortex (BA 18, 19) and areas of putative heteromodal cortex (BA 37, 39, 40, 21/22), specific regions of lateral temporal cortex (BA 41, 42, 21/22) extending into the STS. These temporal cortical regions, which include primary auditory cortex, overlapped considerably with those activated during heard speech, providing a possible physiological mechanism by which seen speech influences the perception of heard speech.

When audio–visual speech was subsequently contrasted directly with silent lip-reading, activation was also differently observed in the ventral temporal cortex (Talairach co-ordinates x = 32, y = 0, z = 3). This area receives and gives rise to multimodal cortical projections (including those from the auditory and visual systems) and was first highlighted by Elinginger and Wilson42, who recognized its possible role in multimodal integration. Specifically, these authors proposed that this structure might operate, not as a repository for unimodal representations, but as a relay station whereby the senses can access each other directly from their sensory-specific systems. The claustrum has also been recently implicated by Hadjikhani and Roland in visuotactile crossmodal matching45. The precise role of this structure in crossmodal integration clearly warrants substantial investigation.

Using a different imaging technique, magnetoencephalography (MEG), which detects the weak magnetic signals associated with neural currents, Sams and colleagues49, who recognized its possible role in multimodal integration. Specifically, these authors proposed that this structure might operate, not as a repository for unimodal representations, but as a relay station whereby the senses can access each other directly from their sensory-specific systems. The claustrum has also been recently implicated by Hadjikhani and Roland in visuotactile crossmodal matching45. The precise role of this structure in crossmodal integration clearly warrants substantial investigation.

Using a different imaging technique, magnetoencephalography (MEG), which detects the weak magnetic signals associated with neural currents, Sams and colleagues49, who recognized its possible role in multimodal integration. Specifically, these authors proposed that this structure might operate, not as a repository for unimodal representations, but as a relay station whereby the senses can access each other directly from their sensory-specific systems. The claustrum has also been recently implicated by Hadjikhani and Roland in visuotactile crossmodal matching45. The precise role of this structure in crossmodal integration clearly warrants substantial investigation.

Using a different imaging technique, magnetoencephalography (MEG), which detects the weak magnetic signals associated with neural currents, Sams and colleagues49, who recognized its possible role in multimodal integration. Specifically, these authors proposed that this structure might operate, not as a repository for unimodal representations, but as a relay station whereby the senses can access each other directly from their sensory-specific systems. The claustrum has also been recently implicated by Hadjikhani and Roland in visuotactile crossmodal matching45. The precise role of this structure in crossmodal integration clearly warrants substantial investigation.

Using a different imaging technique, magnetoencephalography (MEG), which detects the weak magnetic signals associated with neural currents, Sams and colleagues49, who recognized its possible role in multimodal integration. Specifically, these authors proposed that this structure might operate, not as a repository for unimodal representations, but as a relay station whereby the senses can access each other directly from their sensory-specific systems. The claustrum has also been recently implicated by Hadjikhani and Roland in visuotactile crossmodal matching45. The precise role of this structure in crossmodal integration clearly warrants substantial investigation.
Modern neuroimaging techniques offer the potential to examine many aspects of the neural bases of multimodal interactions in human subjects. Although the initial integration of two or more sensory streams might depend on small clusters of multimodal neurons, the cognitive effects of such interactions could involve the participation of many other cortical and subcortical areas operating either in parallel or post-integration. Understanding the neural computations underlying the initial multimodal recognition process might ultimately depend on optometric electrophysiological inspection of multimodal neurons in pre-operative patients, together with comparative single-cell recording studies in other species. However, the full range of activations elicited during multimodal processing, and the substrate temporal involvement of different areas, will clearly benefit from the integration of neuroimaging techniques such as positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) (which offer whole brain coverage and impressive spatial resolution), with methods such as electroencephalography (EEG), magnetoencephalography (MEG) and event-related potentials (ERPs), which provide millisecond-by-millisecond temporal resolution of neuroelectric activity.

The utility of combining data obtained from different imaging methodologies can be demonstrated by the experiments illustrated below, each of which examined different aspects of auditory and visual interactions during speech perception. Figure A displays the results of an fMRI study of silent lip-reading. Five hearing subjects were scanned whilst viewing videotapes of a lower half-face silently mouthing numbers and then, whilst listening to numbers being spoken, with the screen turned off. Median images were computed, showing areas of significant activation superimposed on a high-resolution structural MRI. Areas activated during silent lip-reading are shown in red and those activated whilst listening to speech (both seen in blue). These regions of overlap fall in Brodmann areas 41 and 42 in primary auditory cortex and 22 and 21 in auditory association cortex. The results from our experiments and those of Sams and his collaborators both suggest that the perception of visible speech can induce or modify activity in auditory cortex (see Box 2). The superior time resolution of MEGs shows that processing of the visual component is somewhat delayed compared with that of pure acoustic speech. Such a delay is compatible with the possibility that after integration of the visible and auditory signals in association cortex (e.g. close to and including the superior temporal sulcus), information then feeds back to the auditory speech areas via back projections. This formulation gains feasibility in the light of psychological observations that the addition of visible speech is subjectively experienced as an improvement in hearing. Indeed, such a hypothesis is also consistent with the results of both these experiments suggest that lip-reading contributes to speech perception by enhancing activity in the primary auditory regions, perhaps subsequent to integration of the two sensory streams in heteromodal regions proximal to the superior temporal inhibitory. Activation of the primary auditory cortex by visible speech cues might proceed via back projections from heteromodal cortex.

The results from our experiments and those of Sams and his collaborators both suggest that the perception of visible speech can induce or modify activity in auditory cortex (see Box 2). The superior time resolution of MEGs shows that processing of the visual component is somewhat delayed compared with that of pure acoustic speech. Such a delay is compatible with the possibility that after integration of the visible and auditory signals in association cortex (e.g. close to and including the superior temporal sulcus), information then feeds back to the auditory speech areas via back projections. This formulation gains feasibility in the light of psychological observations that the addition of visible speech is subjectively experienced as an improvement in hearing. Indeed, such a hypothesis is also consistent with the results of both these experiments suggest that lip-reading contributes to speech perception by enhancing activity in the primary auditory regions, perhaps subsequent to integration of the two sensory streams in heteromodal regions proximal to the superior temporal inhibitory. Activation of the primary auditory cortex by visible speech cues might proceed via back projections from heteromodal cortex.

Box 2. Neuroimaging studies of audio–visual speech perception

Modern neuroimaging techniques offer the potential to examine many aspects of the neural bases of multimodal interactions in human subjects. Although the initial integration of two or more sensory streams might depend on small clusters of multimodal neurons, the cognitive effects of such interactions could involve the participation of many other cortical and subcortical areas operating either in parallel or post-integration. Understanding the neural computations underlying the initial multimodal recognition process might ultimately depend on optometric electrophysiological inspection of multimodal neurons in pre-operative patients, together with comparative single-cell recording studies in other species. However, the full range of activations elicited during multimodal processing, and the substrate temporal involvement of different areas, will clearly benefit from the integration of neuroimaging techniques such as positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) (which offer whole brain coverage and impressive spatial resolution), with methods such as electroencephalography (EEG), magnetoencephalography (MEG) and event-related potentials (ERPs), which provide millisecond-by-millisecond temporal resolution of neuroelectric activity.

The utility of combining data obtained from different imaging methodologies can be demonstrated by the experiments illustrated below, each of which examined different aspects of auditory and visual interactions during speech perception. Figure A displays the results of an fMRI study of silent lip-reading. Five hearing subjects were scanned whilst viewing videotapes of a lower half-face silently mouthing numbers and then, whilst listening to numbers being spoken, with the screen turned off. Median images were computed, showing areas of significant activation superimposed on a high-resolution structural MRI. Areas activated during silent lip-reading are shown in red and those activated whilst listening to speech (both seen in blue). These regions of overlap fall in Brodmann areas 41 and 42 in primary auditory cortex and 22 and 21 in auditory association cortex. The results from our experiments and those of Sams and his collaborators both suggest that the perception of visible speech can induce or modify activity in auditory cortex (see Box 2). The superior time resolution of MEGs shows that processing of the visual component is somewhat delayed compared with that of pure acoustic speech. Such a delay is compatible with the possibility that after integration of the visible and auditory signals in association cortex (e.g. close to and including the superior temporal sulcus), information then feeds back to the auditory speech areas via back projections. This formulation gains feasibility in the light of psychological observations that the addition of visible speech is subjectively experienced as an improvement in hearing. Indeed, such a hypothesis is also consistent with the results of both these experiments suggest that lip-reading contributes to speech perception by enhancing activity in the primary auditory regions, perhaps subsequent to integration of the two sensory streams in heteromodal regions proximal to the superior temporal inhibitory. Activation of the primary auditory cortex by visible speech cues might proceed via back projections from heteromodal cortex.
Outstanding questions

• Primary sensory cortex has now been shown to be activated by exogenous stimulation in its own modality, exogenous stimulation by another modality and (in the visual system at least) during mental imagery, yet all produce distinct perceptual experiences. What are the neural correlates of these differing experiences?
• Studies have shown that neonates are also capable of pairing different sensory inputs that occur in close spatial proximity, move together simultaneously, at the same rhythm and with the appropriate temporal microstructure. These findings prompt the question: to what extent is the capability to use sensory-specific information interchangeably and to combine multiple sensory inputs during perception innately determined or dependent upon environmental experience?
• How far do the principles underlying the neural integration of speech information generalize to other instances of crossmodal combination of non-speech stimuli?

Mormus's suggestion\(^4\) that heteromodal cortex acts as a gateway through which one sensory modality can gain access to another.

Conclusions

As our understanding of the neural processes underlying modality-specific sensory perception increases, there is growing interest in the mechanisms by which information is combined between senses. In this review, we have focused on only one area of multimodal integration; that of audio–visual speech perception. However, it is clear from this discussion that our ability to probe and unravel our neural basis and those underlying the combination of information in other sensory modalities will necessitate a multifaceted approach integrating state-of-the-art techniques and traditional psychological methods. Combining the excellent temporal resolution of MEG or event related potentials (ERPs) with the superior spatial resolution of fMRI promises to be of great benefit in establishing the time course and route by which multimodal interactions occur in humans. However, a more complete understanding of the computations underlying these combinatorial processes is likely to involve the integration of neuroimaging data in humans with electrophysiological studies in non-human primates, particularly for non-speech stimuli. We believe that such an approach holds great promise for revealing the details of the multi-sensory processes that characterize our interactions with the environment.

Acknowledgements

Oxford University Press Printing and the Bethlem and Maudsley Trust supported the functional imaging research reported in this paper. G-C acknowledges the support of the Medical Research Council, UK. We also thank the referees for their important and helpful comments on the manuscript.

References

15 Welch, R.B. (1980) Integration of visual and auditory information in the perception of speech events. Dissertation Abstracts International, 52, 3234A
29 Summerfield, A.C. (1987) Some preliminaries to a comprehensive account of audio–visual speech perception, in Hearing by Aye. The
The increasing interest and understanding of the development, and motor and cognitive functions of the cerebellum is highlighted in a series of articles that have been commissioned for two special issues of TICS and TINS.

The special issues, commissioned with the assistance of the special guest editor Peter Strick, Syracuse, NY, USA, will present the latest information from leading scientists in the fields of anatomy, gene expression, development, conditioning, learning, neuroimaging, modelling, and cognitive function. The short review articles will provide a comprehensive introduction to the key issues in current cerebellar research for specialists and non-specialists alike.

Subjects areas covered in the special issues will include the following:

Development and developmental genetics of the cerebellum
- Hereditary ataxias
- Function of the inferior olive
- Long-term depression

The cerebellum in motor learning and cognition
- Conditioned reflexes and cerebellar learning
- Neuroimaging of language, learning and memory in the cerebellum
- Cerebellar dysfunction and cognition
- Computational models of cerebellar function