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SUMMARY. Motivated by an ongoing pediatric mental health care (PMHC) study, this article presents weakly structured
methods for analyzing doubly censored recurrent event data where only coarsened information on censoring is available. The
study extracted administrative records of emergency department visits from provincial health administrative databases. The
available information of each individual subject is limited to a subject-specific time window determined up to concealed data.
To evaluate time-dependent effect of exposures, we adapt the local linear estimation with right censored survival times under
the Cox regression model with time-varying coefficients (cf. Cai and Sun, Scandinavian Journal of Statistics 2003, 30, 93—
111). We establish the pointwise consistency and asymptotic normality of the regression parameter estimator, and examine

its performance by simulation. The PMHC study illustrates the proposed approach throughout the article.
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1. Introduction

Administrative databases provide sources of rich data but
are often developed for non-research purposes. Issues of pri-
vacy or confidentiality may constrain the actual information
released to researchers, particularly true for health related
data. To answer specific health questions based on admin-
istrative records, researchers often encounter challenges to
accommodate features of the released data in order to per-
form valid statistical analyses. Typical challenges include that
the information availability varies from individual to indi-
vidual since a scientifically meaningful time origin is usually
subject-specific. Often each individual’s information is both
left- and right-censored, that is, doubly censored as referred
to by Zhang and Li (1996) and Cai and Cheng (2004), for
example. Further, the censoring times are missing with part
or all of the study individuals in many applications.

The Ambulatory Care Classification System (ACCS)
(Alberta Health and Wellness, 2004) is an example of a
large, population-based database in the province of Alberta,
Canada. It was initiated in 1999 by the provincial health
ministry, now known as Alberta Health, who provides health
services. All Alberta residents access health care at no per-
sonal cost in a uniform single-payer health system. The ACCS
database includes all presentations made by Alberta residents
to Alberta Emergency Departments (EDs) since 1999. With
ethics approvals and data agreements in place, researchers
can request an extraction from the ACCS database, although
aspects of the delivered data may not be at the level of detail
as the data stored. Several research studies have accessed the
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ACCS database for different health conditions. The pediatric
mental health care study (PMHC for short) focuses on pre-
sentations to Alberta EDs made by children and youth (aged
younger or equal to 17 years old at the time of the ED visit)
for mental health reasons during April 1, 2002 to March 31,
2011. The extracted study information contains 41,159 ED
visits made by 27,947 individuals and is referred to as the
PMHC dataset in the rest of this article. The dataset includes
demographic data (e.g., age at ED visit, age at fiscal year end,
sex) and ED visit data (e.g., start and end dates and times of
the ED visit, diagnosis).

The majority of mental illnesses begin in childhood (Leitch,
2007). The capacity of the pediatric mental health care sys-
tem is exceeded by the need for care and there are limited
options for mental health care. This situation may drive some
families to seek help in EDs. The EDs may be the first point of
contact with the health system for mental health for children
in crisis (Halamandaris and Anderson, 1999). Newton et al.
(2011) present a preliminary analysis of the PMHC dataset
during 2002—2008. They observe a significant heterogeneity in
mental health presentations and various patterns of repeated
ED use. Additional findings include the impact of health sys-
tem factors on patient outcomes, a lack of community-based
care available to children and youth, and an ongoing need
for mental health services. Demands to provide more insights
into the heterogeneity and the impact of the factors/exposures
motivated this article. We aim to assess the effects of risk
factors/exposures and to evaluate the frequency of pediatric
ED visits for mental health (hereafter MHED visits) in a
population using the available administrative records.

This article formulates the MHED visit records in the
PMHC dataset as recurrent event data (Cook and Lawless,
2007). The range of age differences among records within
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individual subjects and among them is rather wide. It
motivated us to consider a marginal regression model for
the counting process of an individual’s cumulative MHED
visits over age. The model is analogous to the extended Cox
regression model with time-varying coefficients for a Poisson
process, and allows for the exploration of age-dependent
risk/exposure (covariate) effects. We adapt the local partial
likelihood procedure of Cai and Sun (2003) and Tian et al.
(2005) with the recurrent event data in the PMHC dataset.
The records of the MHED visits were from individuals not
older than 17 years of age during April 1, 2002, to March 31,
2011. This gives rise to doubly censored data in the sense anal-
ogous to the censoring of observations on a quantity such as
an event time considered in Zhang and Li (1996) and Cai and
Cheng (2004) if we assume the population is closed. Moreover,
Alberta Health’s privacy protocol prevents the release of the
individuals’ birthdates for this project. It results in incomplete
information on censoring times of the PMHC dataset.

Considerably rich literature is available on statistical anal-
ysis of event history data under Cox regression models with
time-varying coefficients, an extension of the popular propor-
tional hazards model (Cox, 1972). For example, Zucker and
Karr (1990) present a penalized partial likelihood approach,
and Murphy and Sen (1991) adapt the method of sieves.
More recently, in addition to the local linear estimation of
the time-varying coefficients via a kernel-weighted partial like-
lihood function proposed by Cai and Sun (2003) and Tian
et al. (2005), Nan et al. (2005) conduct a regression anal-
ysis using B-splines. Chen et al. (2012) advocate a global
partial likelihood method in a more general setting of the
Cox model with varying coefficients. Most of the published
articles focus on analysis of right-censored event times; there
are notable exceptions such as Amorim et al. (2008), which
presents regression splines under a proportional rates model
for recurrent event data.

Some researchers such as Kim et al. (1993) and Gomez and
Lagakos (1994) refer to interval censored event times as dou-
bly censored; see Chapter 8 of Sun (2006) for a comprehensive
review of the inference procedures with doubly censored sur-
vival times in this sense. We adopt an alternative definition of
doubly censored data, which is used in Zhang and Li (1996)
and Cai and Cheng (2004), for example. Despite substantial
research on incomplete data analysis, few articles deal with
incomplete observations of censoring time; exceptions include
Hu et al. (1998) and Wang (2011), which assume the cen-
soring time distribution is known or can be estimated with
an independent set of survey data. The coarsened censoring
times in our application result from the unreleased individual
birthdates together with the ED records of age information
aggregated by years. We consider the commonly used assump-
tion that the distribution of birthdays is uniform in a calendar
year, and employ the available relevant information in the
dataset to specify the distributions of different individuals. In
fact, the frequency distribution of birthdates in the year 2011
provided by Alberta Health is in agreement with the uniform
distribution.

The rest of this article is organized as follows. The nota-
tion and modeling are introduced in Section 2. Section 3
starts with an adaption of the procedure in Cai and Sun
(2003) under the extended Cox regression model with recur-
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rent events. The adaption is then used to motivate our
proposed estimation procedures. Section 4 shows an analy-
sis of the PMHC dataset applying the proposed approach.
Final remarks are given in Section 5. Although this article is
presented via the PMHC study that motivated the research,
the approaches and discussions can apply more broadly.

2. Notation and Model

We focus on the individuals who have records of MHED visits
in the PMHC dataset and assume they are independent. Let
N;(a) represent the count of subject i’s cumulative MHED
visits since birth at age a, for i =1,...,n, a > 0; Z;, subject
i’s external covariates. We assume the expected rate function
conditional on Z; is

E{dNi(a) | Z:} = exp{f(a) Z:}dAo(a), (1)

where Ag(a) is the cumulative baseline rate function
f; Ao(u)du. Here the baseline rate function A¢(-) >0 is
unspecified, and the time-varying coefficients B(-) have con-
tinuous second derivatives.

The model specified by (1) is an extension of the propor-
tional rates/means model considered by Pepe and Cai (1993),
Lawless and Nadeau (1995), and Lin et al. (2000) in their
marginal analysis with recurrent events. Our model includes
it as a special case that {N;(a) : a > 0} is a Poisson process
and its conditional intensity function satisfies

a | Hi(a)) = ro(a) explB(a) Z;}, (2)

where H;(a) denotes all the history information prior to age a
of subject i. The Poisson process model (2), an extended Cox
regression model, extends the Anderson—Gill model studied
by Andersen and Gill (1982) to accommodate time-varying
covariate effects. Our approaches are proposed for situations
with the marginal model (1) and applicable to the situations
with model (2) since model (1) is more general.

Denote the window in the calendar time of the data extrac-
tion by [W., Wg] and subject i’s birthdate in the calendar time
by B;. Since only the information on the MHED visits from
Alberta residents aged younger than 18 years old is extracted,
the MHED records of subject i are possibly available dur-
ing his age (in years) over (Cp;, Cg] in the PMHC dataset,
where Cr; = max(0, W, — B;) and Cg; = min(18, Wi — B;). We
assume that the population is closed, both W, and Wy are
independent of the MHED visit records, and subject i’s
birthdate B; is independent of the counting process N;(-) con-
ditional on Z;. Under the assumptions, the PMHC data are a
collection of doubly censored counting processes coupled with
the covariates, where subject i’s left- and right-censoring times
are Cr; and Cg;, independent of the counting process N;(-)
conditional on Z;.

Let T;; be the calendar time of subject i’s jth ED visit in
the PMHC dataset and then the subject’s age at the visit
is A;j = T;; — B;. Denote the total number of subject i’s ED
visits in the PMHC dataset by N = N;(Cg;) — N;(Cy;). The
available information includes 7;; and only the integer part
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of the age A;;, denoted by [A,-j-l, for j=1,...,Nf. That is,
the PMHC dataset contains only the change of the segment
of {N;(a) : a > 0} over the interval (Cy;, Cg;] to N;(Cy;), pro-
vided B; is available: N,«(a) — N,'(CL,') = Zjvél I(A,J < a) for
a e (CL,‘, CR,'].

The indicator of subject i’s observation window Y;(a) =
I(a € (Cpi, Cg]) can be presented as Y((1|Blﬂ)7 where Y(a|B) =
I(max(O, W, — B) < a <min(18, Wy — B)) with a given data
extraction window [Wp, Wg|. Provided with B;, the derived
counting process {Ni*(a) = foa Y(u’B,-)dN,—(u), a> O} is fully
available and satisfies

E(dN;(a) | Z;. B;} = Y(a|B;) exp{B(a) Zi}dAo(a)  (3)

under our model assumption. This allows us to adapt
well-established inference approaches in event history data
analysis.

However, the PMHC dataset does not include the individ-
ual birthdates B;’s due to the privacy protocol. Hence, the
censoring times Cj; and Cg; are missing and only coarsened
information on them is available. The available information
on dN;(a) for Cy; < a < Cg is consequently coarsened. In the
following section, we start with a procedure for estimating
the time-varying regression coefficient B(-) when the birth-
dates B;’s are available under the extended Cox model with
a Poisson process. Subsequently presented are procedures for
estimating B(-) developed under the marginal model (1) with
either available or missing B;’s.

3. Estimation Procedures
We begin with a procedure for estimating B(-) under (2),
an extended Cox model with a Poisson process. It motivates
the proposed estimation procedures in Section 3.2 under the
marginal regression model (1).

3.1.  Estimation under Extended Cox Model with Poisson
Process (2) when Birthdates B;’s are Available

With the PMHC dataset plus the individuals’ birthdates B;’s,

the likelihood function of the unknown parameter functions

Ao(+) and B(+) involved in the intensity functions of the count-

ing processes N;(-) under model (2) in Section 2 is

I II [ro(@expipa)za]™

i=1 ae(CLi,CRi)

x {1 — exp(Bla) Zi}dAo(a) L.

In principle, one may obtain the nonparametric maximum
likelihood estimators of Ag(-) and B(-) jointly in the sense
of Kiefer and Wolfowitz (1956) by maximizing the likelihood
function or its log transformation. Extending the local linear
partial likelihood approach in Cai and Sun (2003) and Tian
et al. (2005) with right-censored survival times, one may con-
sider the local linear maximum partial likelihood estimator
(MPLE) of B(-) as follows.
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Since Cr; > 0 and Cg; < 18 in years, the log-partial likeli-
hood function of B(-) under model (2) is

Z/Y<

—log(zY(u|Bl)exp{ﬂ(u)’&})}dzv;(u). ()

’

Bi){ﬂ(”) Z;

Choose constants 0 < 77, Tz < 18 such that the left and right
censoring times satisfy P(Cyp <t.) >0 and P(Cg > tx) >0
to avoid the boundary problem in the local likelihood esti-
mation. For a fixed a € [r, Tz, approximate B(u) by the
Taylor expansion to the first order: B(a) + B(a)(u —a). Let
y = (,B(a),,ﬁ(a)/) and Zi(u,a) = (Z;., (u —a)Z;) . Using a
kernel function K(-) and substituting B(u) in (4) with its lin-
ear approximation yields the local linear partial likelihood
function of y:

l,,(y;a|B) = Z/ K (u —a)Y(u|B,v){y/Z;*(u,a)

— log (Z Y(u‘B,) exp{y/Z;"(u, a)}) }dN,-(u),

=1

()

where K,(-) = K(-/h)/h. Following the arguments of Cai
and Sun (2003), we can show that the Hessian matrix
821,,()/;a|B)/8)/2 divided by n converges to a negative defi-
nite matrix a.s. under some mild conditions. The concavity of
L(y; a|B) ensures its unique maximum point, denoted by 7.

The first component vector of ,, denoted by B, (a|B), is an
adapted version of Cai and Sun’s local linear maximum partial
likelihood estimator (MPLE) for B(a), a € [t;, Ty]. Extending
the arguments of Cai and Sun (2003), we can establish the
pointwise consistency and weak convergence of the local lin-
ear MPLE 8, (a|B) for a € [t;, ty] with the adaption of the
required conditions for the current situation. The asymptotics
properties require h = O(n™") with 1/2 <v < 1, as pointed
out in Tian et al. (2005).

3.2

3.2.1. Estimation with available birthdates B;’s. Let
Z(y;u,a) = S,El)(y;u,a)/S,Eo)(y;u,a), where S,Eq)(y;u, a) =
S Y (u|B)[Z(u.a)] ™ exply' Z; (u.a)} /n with A%t =1, 4,
AA' for ¢ =0, 1, 2, respectively. Then,

Proposed Estimation Procedures

Lal(y;aB) 1

18
Us(y;aB) = - =202 f/ Ki(u — a)
n ay n J,

X i Y(u
i=1

B){Zi(u,a) — Z;(v;u, a) } dNi(u).

(6)

Note that the solution of U, (y; a|B) = 0 is the maximum point

of I, (y; a}B) in (5). In fact, (6) defines an unbiased estimating
function of B(a) under the marginal model (1).
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Further, denote the limit of Sfl@(y;u,a) as n — oo by
s@(y;u,a) for ¢=0,1,2, and s(1>(y;u,a)/s<0)(y;u,a) by
Z*(y;u, a). Substituting Z*(y;u, a) with z*(y;u, a) in (6) leads
to another estimating function U,(y;a|B), which yields an
estimator of B(a) asymptotically equivalent to the local lin-

ear MPLE B, (a’B) under the extended Cox model (2) with

usual regularity conditions. We can show that f/,,()/;a’B) is
also asymptotically unbiased under the marginal model (1).

In Web Appendix A.1, we outline a proof of the point-
wise consistency and weak convergence of Bn(a|B) with
the bandwidth & = O(n™") where 1/2 < v < 1 under model
(1). We also present a consistent estimator of Bn(a‘B)’s
asymptotic variance. The asymptotics derivation employs the
modern empirical process theory (Pollard, 1990), similar to
the approaches in Bilias et al. (1997), Lin et al. (2000),
and Hu et al. (2003), for example. It can be extended to
derive the asymptotic properties of the estimator proposed
in Section 3.2.2. The arguments of Cai and Sun (2003) using
martingale theory may be followed to establish the consis-
tency and weak convergence of B,,(a‘B) as the local linear
MPLE under model (2). They are not applicable in the situ-
ations with the marginal model (1).

Note that, with fixed B(-), the following estimating equation
is unbiased under model (1):

n

> " [¥(a]B)dNi(a) - ¥ (a

i=1

a € (0,18). (M)

B;) exp{,B(a)/Zi}dAo(a)] =0,

This yields an extended Breslow estimator (Lin et al., 2000)
for the cumulative baseline rate function:

>y Y(a|B))dN(a)
. Y(a|B)) exp{B.(a|B) Z)}’

dAo,(a|B) = ae(0,18).

(8)

Here we take the convention 0/0 =0, and B, (a’B) = Bn(rL ‘B)
for a € (0, 7.) and B,,(a|B) = B,,(ty|B) for a € (ty, 18). With
the consistency of B,, (a|B), we may establish the pointwise
consistency of Ag,(a|B) = f(;l dAOn(u|B) defined in (8). Fur-
ther (8) can be used to estimate the baseline rate function
Ao(+) by the kernel smoothing:

Xo»z(a}B) = / Ky (u — a)d[\o,l(u‘B), a € (0,18),

where K;(-) = K*('/g)/g with K*(-) a kernel function. Inte-
grating the arguments in Tian et al. (2005) and Lin et al.
(2000), one may establish the uniform consistency and the
weak convergence of the baseline estimator and the regression
parameter estimator.

3.2.2. Estimation with missing B;’s. When the birthdates
B;’s are unavailable, the censoring times C;; and Cg; are miss-
ing and the information on the change of the segment of
{N;(a) : a > 0} over the interval (Cp;, Cg;] is coarsened if the
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ages at the visits are recorded in years. The estimator B, ( |B)
in Section 3.2.1 is then not evaluable. The PMHC dataset
exemplifies the situation. We propose the following approach
to accommodate it.

It is a commonly acceptable assumption that birthdates
follow the uniform distribution over a calendar year. In addi-
tion, the birthdate of subject i is the difference of the calendar
time and his/her age at his/her visits, B; = Tj; — A;; for all j.
We infer that the missing B; is contained in all the intervals of
(T,«» — {A,‘j-‘ -1,T;— [A,-j” for j=1,..., Nf. This inference,
together with B; < Wg and B; + 18 > W,, yields that, condi-
tional on the subjects’ available records in the PMHC dataset,
the missing B;’s can be viewed as independent random vari-
ables from the uniform distributions over the intervals

Nj

-

a0 -17- ).
j=1
fori=1,...,n, denoted by B; ~ G,(-) = Unif([;).

Let Yi(a) = [ Y(a|b)dGi(b) and dN?(a) =
fooo {Y(a‘b)dN,-(a)}dG,-(b). They are the expectations of
Y(a’B,-) and dN}(a) conditional on the available data, respec-
tively, attained by integrating out B;’s with B; ~ Unif(l;).
Here dN?(a) = E{dN;‘ (a) | available data} is not in general
the product of ¥;(a) and E{dNi(a) | available data} since

Y(a’B,-) and dN;(a) are not necessarily independent condi-
tional on the available information. We consider the following
estimating function of y to estimate B(a) for a € [t., 7g]:

B =1 [ Kilum0) Y {20020 aN ),
)

where Zj(y; u,a) = S‘él)(y; u, a)/s,go)(y;u, a) with nfSn(q)(y;
u,a) =S 1 Yi(u)Zi(u,a)® exp{y Z; (u, a)} for g=0, 1, 2. The
limit of Z(y;u,a) is z(y;u,a), the same as the limit of
Z*(y;u,a) in Section 3.1. Plugging Z(y;u,a) in (9) gives a
slight variation of E,(y;a), denoted by E,l(y;u’B), which is
the projection of U, (y; u|B) in Section 3.1 to the space of the
available data.

Clearly E,(y;a) in (9) is evaluable with the PMHC dataset.
In fact, it is asymptotically unbiased since both E{dﬂ’i*(u) | Zi}
and E{f/,(u)‘Z,} exp(B(u) Z;)dAo(a) are E{dN,-*(u)|Z,-} =
E{Y(u B,~)dN,-(u)|Z,-}. Denote by f,(a) the estimator of B(a)
derived from the solution of E,(y;a) =0 for a € [t;, tg]. We
outline a proof in Web Appendix A.2 for the pointwise consis-
tency and asymptotic normality of the estimator E,,() Note
that the difference of dN7(a) and Y;(a)exp(B(a) Z;)dAo(a)
does not define a martingale process with respect to the
natural filtration. Our asymptotics derivation adapts the
arguments of Cai and Sun (2003) by applying the functional
central limit theorems (Pollard, 1990).

Moreover, projecting the estimating equation (7) to the
space of the PMHC dataset yields an estimator of Ag(a) with
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Table 1
Demographic variable summary for the PMHC dataset
Socio-economic proxy (pSES)
Sex Age (in years) Human Residence

Female Male 0—5 6—12 13—17 Other Aboriginal Services Welfare Urban Rural
subjects® (n = 27,947) 15852 12095 579 3938 23430 18260 3785 4098 1804 21293 6654
visits (n =41,159) 24160 16999 603 5105 35451 25391 5856 7003 2909 31524 9635

2 based on the information collected at all the subjects’ first MHED visits in the PMHC dataset.

fixed B(-):

~ a: B(:)) = ‘ Z?:l dN’*(u)
Aon(a; B()) = /0 S Yi(u) exp{B(u) Z;}’

a € (0,18).

We may obtain by the kernel smoothing an estimator of Ao (+)
based on Ag,(a; B(-)) and B,(-) obtained above as

Aon(a) = / Ki(u— a) Aoy (u; Bu(u))du, a e (0,18),

Yvhere K;(~) = K*(-/g)/g with K*A(~) a ke}*nel function, and
Bu(a) = B,(r) for 0 < a < 1, and B,(a) = B,(wy) for 1y <a <
18.

Computing the estimator ,B,,() requires expectations cal-
culated with respect to the missing birthdates B;’s. The
expectations can be well-approximated by the corresponding
admissible sample means with a large number of indepen-
dent sets of generated B;’s from the distributions of G;(-).
Moreover, with given B;’s, there are available computing
codes/software packages to evaluate the estimator B,,(‘B) in
Section 3.2.1. These considerations lead to the following two
easy-to-implement procedures for estimating B(-).

Conditional on the available data, generate W indepen-
dent sets of B = {B,» i=1, ,n} with B; ~ G,(-) = Unif(Z;)
independent with each other, denoted by B®™ w=1,...,W.

Procedure A. Approximate the estimating function E,(y; u)
in (9) by U, w(y;a) = erzl U,(y;a | B™)/W, and solve the
equation U, w(y;a) = 0 to attain an estimator of B(a) for a €
[tL, Tv]. Denote the derived estimator by ﬁ,,w(~).

Procedure B. Obtain Bn(-‘B("J)) by solving U, (y;a | B™) =
0 as in (6), and estimate B(-) with the sample mean B,y (-) =
23:1 Bn( ’B(w))/w‘

We justify in Web Appendix A.3 that the two alternative
estimators .an(’) and ,an(-) are asymptotically equivalent to
B.(-) as W — oo and n — oco. Procedure A needs to implement
only once a local estimator with the augmented data using W
sets of generated B;’s. It adapts the idea of the Monte Carlo
implementation of the EM algorithm (Wei and Tanner, 1990)
in the estimation procedure proposed in this section, a type
of the expectation-solution algorithm (Rosen et al., 2000).
Procedure B is similar to one of the two proposed approaches
in Schaubel and Zhang (2010), applying the idea of multiple
imputation (Rubin, 1987). It requires implementing the local

estimator with each of the W generated B;’s sets. Procedure B
is expected to take more computing time than Procedure A.
On the other hand, since the resulting estimates by Procedure
B are sample means of W realizations of the local estimator,
we anticipate the estimate curves by Procedure B are more
smooth than the ones by Procedure A.

4. Analysis of the PMHC Dataset

Almost 75% individuals had only one visit record in the
aforementioned PMHC dataset; 15.2%, two visits; 5.4%, three
visits; 4.7%, more than three visits. Table 1 summarizes the
demographic information both according to the individual
subjects and to the individual MHED visits in the PMHC
dataset. The nonnegligible recurrence of MHED visits guided
us to formulate them as recurrent events.

Three risk factors/exposures were considered as the exter-
nal covariates: sex (male vs. female), pSES (socio-economic
proxy: Aboriginal/human service recipient/welfare vs. oth-
ers), and residence (indicator of residence region: rural vs.
urban). The PMHC data show that the variables of pSES
and residence are rather stable over time within an individual
subject (Wang, 2014). Thus, we assumed all three covariates
are time-independent and used the covariate information at
each individual’s first MHED visit in the PMHC dataset.

We started with an analysis under the proportional
rates/means model with time-independent coefficients (Lin
et al., 2000). Table 2 presents three sets of estimates and
standard errors for the coefficients, using one set of generated
birthdates and by Procedures A and B. The three sets of esti-
mates are very similar to each other. This analysis confirms
the significance of all the three factors in MHED visit.

We then conducted an analysis under the marginal regres-
sion model with time-varying coefficients as given in (1). The
approach in Section 3.2.2 was applied using the “Epanech-
nikov kernel” function K(u) =3(1 —u?)/4,—1<u <1. We
used two months as a time unit, set the bandwidth tobe h = 3
units, and set the window of age to be t;, = 6 to 7z = 102 time
units (i.e., one to 17 years of age) to evaluate the estimators
for the regression parameter function B(a) of the model in
(1) and then the estimators for the baseline cumulative rate
function. Each of the local constant and local linear estima-
tors was implemented for one set of generated birthdates, and
for both Procedures A and B in Section 3.2.2.

Figures 1 and 2 present the estimates by Procedures A
and B with W = 100 together with approximate 95% point-
wise confidence intervals, respectively. The variance estimates
were obtained using the consistent variance estimators given
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Table 2
Coefficient estimates and standard error estimates with the proportional rates model

Procedure with Procedure A Procedure B

generated B;’s W =100 W =100
Covariate B(B) SE(B(B)) B SE(B) B SE(B)
sex (male vs. female) —.0544 .0156 —.0556 .0156 —.0540 .0155
pSES (government sponsored vs. other) .1563 .0173 .1556 .0173 1564 .0173
residence (rural vs. urban) —.0483 .0185 —.0495 .0185 —.0490 .0185

in Web Appendix A.3. The left panel in each figure presents Figures 1 and 2 agree with each other strongly. The estimated
the local constant estimates; the right panel, the local linear curves by Procedure B are expectedly more smooth than the
estimates. The local constant estimates are very similar to  ones by Procedure A. Our analysis confirmed that Procedure
the local linear estimates, and the corresponding estimates in B requires more time than Procedure A.
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Figure 1. Regression parameter estimates with PMHC data: the thick solid curves are the regression estimates under the
marginal model (1) by Procedure A of Section 3.2.2, the local constant/linear estimates in the left/right panels, and shaded
with the limits of approximate 95% piecewise confidence intervals; the dashed lines, under the proportional rates model.
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Figure 2. Regression parameter estimates with PMHC data: the thick solid curves are the regression estimates under
marginal model (1) by Procedure B of Section 3.2.2, the local constant/linear estimates in the left/right panels, and shaded
with the limits of approximate 95% piecewise confidence intervals; the dashed lines, under the proportional rates model.

For comparison, we add in each plot the zero line, and
the estimate and 95% confidence intervals for the time-
independent regression coefficient in the proportional rates
model from Table 2. The proportional rates model allows the
estimation of the regression parameters by pooling informa-
tion throughout the whole interval of 0-17 years of age, and
thus leads to very narrow confidence intervals. The pointwise
confidence intervals associated with the local estimate curves
are rather wide for younger ages and become narrower for
older ages. This feature may be explained by the counts of
ED visits from different age groups. The regression estimates
with the proportional rates model appear to be the overall
averages of the corresponding estimate curves.

The curve estimates interestingly reveal age-varying effects
of all the three factors. For example, the four sets of local
estimate curves for the coefficient to sex in our marginal

regression model show the following: (i) boys and girls
have similar ED visit frequencies before starting school; (ii)
younger, school aged boys tend to have significantly more
ED visits than girls; and (iii) teenage girls have significantly
higher ED visit frequencies than teenage boys. These findings
are in agreement with the general understanding of sex dif-
ferences in ED presentations for mental health reasons. As
another example, the estimates for the pSES-related effect
over time indicate significantly higher frequencies of ED visits
from children of families supported by social programs during
school ages. Moreover, there appears a decreasing trend in the
ED visit frequency associated with children from rural regions
in early school ages. This leads to the significantly higher fre-
quency in the rural group before school ages to become rather
comparable with the frequency in the urban group during the
teenage years.
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Figure 3. Mean estimates with PMHC data: plots of the top row present the local linear estimates under the marginal
model (1) by Procedure B of Section 3.2.2; the bottom row, under the proportional rates model.

We combined the regression parameter estimates and
the estimates of the baseline function with the local con-
stant/linear estimators by Procedures A and B, and obtained
estimates for the cumulative rate (mean) functions of eight
groups, determined by the three binary factors: sex, pSES,
and region. The four sets of mean estimates are very similar
to each other. As an example, we present the rate estimate
curves based on the local linear estimator by Procedure B in
Figure 3 together with the rate estimates under the propor-
tional rates model for comparison. All of the estimate curves
show distinct age eras. At about 13 years of age, the mean
(cumulative rate) estimates increase sharply overall, espe-
cially in the female groups. This finding would agree with
empirical evidence. Adolescents are more frequent ED visi-

tors for mental health reasons than younger children. We also
know from earlier work that older female youth have higher
numbers of ED visits than males (Newton et al., 2011). The
curves by the proposed approach cross over with each other
and indicate a non-proportional relationship between the ED
visit frequencies of the different groups, different from what
the proportional rates model assumes.

We varied the time unit in the analysis to compare the
resulting estimates of the time-varying covariate effects. Web
Figures 1 and 2 in Web Appendix B display the estimated
curves by the local constant and local linear approaches under
Procedures A and B with the time unit being 1, 6, and 12
months in addition to 2 months. A longer time unit leads to
smoother estimates and provides less detail on the shape of
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the curve. One may apply the commonly used plug-in or cross-
validation selection method in kernel smoothing to determine
the bandwidth corresponding to the chosen time unit.

A small simulation was conducted to examine how well
our approach handles the missing birthdates. We considered
the model (1) with one covariate (sex), took one set of gen-
erated birthdates as the real birthdates, and evaluated the
local constant and local linear estimators of the regression
parameter given in Section 3.2.1. The curve estimates are pre-
sented in Web Figure 3 together with the realizations of the
local constant and local linear estimators in Section 3.2.2 by
Procedures A and B with W = 100. Both procedures yielded
estimates that captured the general shape of the curve esti-
mate by Section 3.2.1. Further details are presented in Web
Appendix B.

5. Discussion

This article proposes an approach to analyzing recurrent event
data extracted from an administrative database. Motivated by
the PMHC dataset, we address missing start times (e.g., birth-
dates) of the underlying counting processes, which results in
missing censoring times and coarsening information of the
recurrent events. We adapt the local linear/constant esti-
mation procedures with survival times to evaluate covariate
effects over time. The application of the approach with the
PMHC data verifies earlier findings of the PMHC study, and
provides new insights into pediatric mental health care in gen-
eral. Strictly speaking, the target population would be any
individual with an MHED visit before the age of 18 and the
study population is comprised of Alberta residents with an
MHED visit in Alberta before the age of 18. Our findings
from the data analysis in this article may apply to the target
population, since the individuals in the PMHC dataset (dur-
ing April 1, 2002, to March 31, 2011) can reasonably be taken
as a representative sample of the population.

The proposed approach is rather flexible. We can adapt it
to accommodate time-dependent covariates, and to explore
seasonal and spatial patterns in the ED visits. Although the
approach assumes the study subjects are independent, we may
modify it to accommodate subjects geographically clustered.
Moreover, we may develop a procedure based on the proposed
estimator and its weak convergence for testing whether the
effect of a covariate differs significantly from a constant.

There are other practical issues worthy of further investiga-
tion. For example, we assume the study population is closed.
In fact, study subjects may enter into and exit out of the
population because of relocation, hospitalization, or death,
say. If not a resident or in hospital, the subject is not eligi-
ble to have a recorded ED visit. This feature results in “later
entry,” “earlier exit,” or “gapped observation times” associ-
ated with the study subjects and violates the assumption.
Not accounting for it could bias the inference. As another
example, generations turn over every 10-15 years and the
pattern of ED visits may change with the generation. This
aspect may yield informative censoring in the extracted infor-
mation. Moreover, one may wish to draw conclusions about
all of Alberta’s children and youth, and that would require
data beyond the individuals with ED visit records.
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6. Supplementary Materials

Web Appendices referenced in Sections 3.2 and 4 are avail-
able with this article at the Biometrics website on Wiley
Online Library. Preliminary R/C++ code is also available at
the website.
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