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Abstract

This article is concerned with evaluating the association between two event times without 

specifying the joint distribution parametrically. This is particularly challenging when the 

observations on the event times are subject to informative censoring due to a terminating event 

such as death. There are few methods suitable for assessing covariate effects on association in this 

context. We link the joint distribution of the two event times and the informative censoring time 

using a nested copula function. We use flexible functional forms to specify the covariate effects 

on both the marginal and joint distributions. In a semiparametric model for the bivariate event 

time, we estimate simultaneously the association parameters, the marginal survival functions, 

and the covariate effects. A byproduct of the approach is a consistent estimator for the induced 

marginal survival function of each event time conditional on the covariates. We develop an 

easy-to-implement pseudolikelihood-based inference procedure, derive the asymptotic properties 

of the estimators, and conduct simulation studies to examine the finite-sample performance of 

the proposed approach. For illustration, we apply our method to analyze data from the breast 

cancer survivorship study that motivated this research. Supplementary materials for this article are 

available online.
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1. Introduction

It is often of interest to study the association between two event times. For example, a 

breast cancer survivorship project (Davis et al. 2014) in British Columbia (BC), referred 

to as the cancer survivorship study, aims to examine the association between the time 

to relapse/second cancer (RSC) and the time to cardiovascular disease (CVD) among 

breast cancer survivors and to evaluate the covariate effects on the association. The study 

observations on the times to RSC and CVD are censored by either the end of the study 

follow-up or death. Because the death time is likely related to both the RSC and CVD 

times, conventional methods, such as the Kaplan–Meier estimator for the survival function 

of an event time, are not directly applicable. We must account for the potential dependence 

between the two event times of interest and the informative censoring. In addition, it is 

often impractical to confidently specify a parametric model for the joint distribution of the 

two event times. Motivated by the cancer survivorship study, this article focuses on the 

estimation of the conditional joint distribution of bivariate event time using a copula model. 

We simultaneously estimate the covariate effects on both the association between the two 

event times and their marginal distributions in the presence of informative censoring.

The potential informative censoring of event times due to death may be framed as a 

semi-competing risk (Fine, Jiang, and Chappell 2001): observations on the event times of 

interest can be censored by death, but not vice versa. Various methods have been proposed 

to address this type of informative censoring in situations with a univariate event time. 

Zheng and Klein (1995) proposed a nonparametric estimator for the marginal distributions 

for a given copula function assuming that its association parameter is known. Fine, Jiang, 

and Chappell (2001) analyzed the semi-competing risk data using a Clayton copula. Their 

approach was later extended to the Archimedean copula family by Wang (2003). Chen 

(2012) further extended the copula models to handle semiparametric regression analysis 

using the transformation Cox model. In the setting of clustered semi-competing risk data, 

Emura et al. (2017) and Peng, Xiang, and Wang (2018) proposed joint copula–frailty 

modeling approaches where the joint distribution of the nonterminal and terminal events was 

modeled using a copula model, and the dependence within clusters was modeled by random 

effects. Emura and Chen (2018) reviewed the use of copula-based approaches to deal 

with the informative censoring for univariate event times. However, methods handling the 

informative censoring with multivariate event times are lacking. In the cancer survivorship 

study, both the time to RSC and the time to CVD are likely censored by death informatively. 

We must account for the informative censoring to conduct valid inference on the joint 

distribution of the two event times.

Three approaches are commonly used to model multivariate event times, namely the 

marginal, frailty, and copula approaches. The marginal approach (Wei, Lin, and Weissfeld 

1989) considers the marginal hazards and accounts for the dependence through the use of 

a robust variance estimator. Because it does not explicitly model the association between 

event times, it is not applicable to our setting, where the goal is to assess the covariate 

effects on the association parameters in the joint distribution of event times. The frailty 

approach models dependence of the event times through the incorporation of an unknown 

frailty variable in the conditional hazard functions (see, e.g., Wienke 2010). The copula 
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model approach directly links the marginal distribution of each event time through a 

copula dependence parameter; see the introductions to copulas in Joe (1997) and Nelsen 

(2006). The frailty and copula models (Archimedean copula in particular) have some 

connections, for example, the functional form of the inverse of the generator function for an 

Archimedean copula is identical to the Laplace transform of the frailty density function for 

the corresponding frailty model. However, they differ in the parameterization of the marginal 

distributions and their dependence (Wienke 2010; Goethals, Janssen, and Duchateau 2008). 

In a copula model, the marginal distributions do not have overlapping parameters with the 

dependence component, whereas such overlapping parameters are present in a frailty model 

(Hougaard 1986; Goethals, Janssen, and Duchateau 2008; Prenen, Braekers, and Duchateau 

2016). We adapt the copula approach to simultaneously model the covariate effects on the 

association between the two event times and on the marginal distribution of each event time.

This article develops a semiparametric approach to analyzing the bivariate event time in the 

presence of informative censoring due to a terminal event. The ultimate goal is to estimate 

the association between the two event times to characterize their joint distribution, and to 

evaluate the covariate effects on both the marginal and joint distributions. We formulate the 

joint distribution of the bivariate event time and the informative censoring time by a nested 

copula function, which embeds a copula model for the joint distribution of the two event 

times in another copula function incorporating the dependence of the bivariate event time 

with the censoring time. This allows the association between the two event times of interest 

and their dependence on the informative censoring time to be different. Our approach is 

more flexible than that of Lo and Wilke (2010) and Li et al. (2019), which assumes that the 

joint distribution of the bivariate event time and the censoring time follows a multivariate 

copula model. Furthermore, our approach permits the assessment of covariate effects on the 

dependence parameters as elaborated below.

Most of the existing approaches using copula models for time-to-event studies treat 

the copula dependence parameter as a single constant. Lo and Wilke (2010) used a 

multivariate Archimedean copula to model multiple competing event times and proposed 

a nonparametric estimator for the marginal survival functions for a given copula function 

with a known constant dependence parameter. Sun and Ding (2019) proposed the use of a 

two-parameter copula family to model an interval-censored bivariate event time, where both 

copula parameters were considered as scalars. In the nonsurvival context, Nikoloulopoulos 

and Karlis (2008) introduced a regression component for the copula parameter by specifying 

the parameter conditional on the covariates. In the cancer survivorship study, the association 

between times to RSC and times to CVD was likely to be influenced by individual 

characteristics. This motivated us to extend the constant dependence parameter to functions 

of covariates. Doing so permits the direct assessment of the covariate effects on the 

association parameters.

A two-stage estimation procedure has been widely employed for inference on the parameters 

in copula models (Shih and Louis 1995; Genest, Ghoudi, and Rivest 1995). In the first stage, 

the marginal distributions are estimated, and the estimated distributions are used to estimate 

the dependence parameters in the copula model in the second stage. Glidden and Self (1999) 

and Glidden (2000) extended the approach of Shih and Louis (1995) to allow the failure 
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times to marginally follow the Cox proportional hazards (PH) model and a stratified Cox 

PH model, respectively. In our setting, because of the informative censoring, available and 

well-established approaches with the Cox PH and the accelerated failure time (AFT) models, 

for example, are not directly applicable. We propose an easy-to-implement pseudolikelihood 

estimation procedure, which adapts the two-stage procedure to accommodate informative 

censoring. As a byproduct of our approach, we obtain a semiparametric consistent estimator 

for the conditional distribution of an event time with observations subject to informative 

censoring.

The main contributions of this article are twofold. First, it proposes a strategy to address 

the challenges in the analysis of bivariate event times with informative censoring due to a 

terminating event. This approach can be adapted to other types of informative censoring. 

Second, it allows conditional modeling on both the marginal and association parameters in 

the joint distribution of the bivariate event times. To the best of our knowledge, conditional 

copula dependence modeling has not been studied formally in the context of multivariate 

event times.

The rest of this article is organized as follows. Section 2 presents the proposed approach, 

including the notation, the model formulation, and the inference procedure. Section 3 reports 

simulation studies conducted to examine the finite-sample performance of the proposed 

approach in terms of consistency, efficiency, robustness, flexibility, and the evaluation of 

covariate effects. Section 4 presents an analysis of the motivating breast cancer data, and 

Section 5 provides some final remarks. Additional technical details, simulation results, and 

data analysis results are provided in the supplementary materials. The programming code to 

implement the proposed approach is provided in the GitHub repository (https://github.com/

dli-stats/bvic).

2. Semiparametric Estimation Based on Bivariate Observations Subject to 

Informative Censoring

2.1. Notation

Let T1 and T2 be the two event times of interest and Z the covariate vector. We use 

S12(t1, t2|Z) = Pr(T1 ≥ t1, T2 ≥ t2|Z) to denote the joint survival function of T1 and T2 

conditional on Z. Suppose that the observations on T1 and T2 are subject to right-censoring 

where the censoring time C is the minimum of the time to a terminating event D and the 

administrative end of follow-up time CA, that is, C = D ∧ CA. Let SD(d|Z) be the conditional 

survival function of D. Note that both the T1 and T2 observations can be are censored by 

the occurrence of D but not vice versa. Adopting the conventional notation, let ΔD be the 

indicator I{D ≤ CA}, and Uj = Tj ∧ C with Δj = I{Tj ≤ C} for j = 1, 2. Suppose that the study 

data are n independent realizations of, [(U1, Δ1), (U2, Δ2), (C, ΔD), Z] denoted by

Observed‐Data  = u1i, δ1i , u2i, δ2i , ci, δDi , zi : i = 1, …, n . (1)

We consider in this article the distributions of the event times Tj over the intervals [0, vj] 

with vj chosen to be slightly smaller than maxi{uji} for j = 1, 2.
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2.2. Modeling and Inference

2.2.1. Joint Survival Function and Likelihood—We assume that the administrative 

end of follow-up time CA is independent of the event times T1 and T2, and the time to 

the terminating event D. To specify the correlation between (T1, T2) and D given Z, we 

embed the conditional bivariate survival function of (T1, T2) in a bivariate Archimedean 

copula model (e.g., Joe 1997; Nelsen 2006). A bivariate Archimedean copula is defined as 

A[2] u1, u2; θ = ψ−1 ψ u1; θ + ψ u2; θ ; θ , where for a fixed θ, ψ(·; θ): [0, 1] → [0, ∞] is a 

continuous, strictly decreasing convex function with ψ(1; θ) = 0, and ψ−1(·; θ) is its inverse 

function. Here θ is a parameter within parameter space Θ, and ψ is the generator function of 

the copula A[2]( ⋅ ). The popularity of Archimedean copulas in statistical modeling is in part 

due to their ability to accommodate various dependence structures (Nelsen 2006).

Assume that the joint survival function of (T1, T2) and D conditional on Z is

Pr T 1 ≥ t1, T 2 ≥ t2, D ≥ d ∣ Z = A[2] S12 t1, t2 ∣ Z , SD(d ∣ Z); θ(Z) . (2)

Equation (2) employs the bivariate Archimedean copula A[2](u, v; θ(Z)) for a fixed Z with u 

= S12(t1, t2|Z) and v = SD(d|Z). Since both S12(t1, t2|Z) and SD(d|Z) are survival functions, 

we have 0 ≤ u ≤ 1 and 0 ≤ v ≤ 1 for t1, t2, d ≥ 0. Thus, Equation (2) presents a well-defined 

function of t1, t2, d, denoted by S(t1, t2, d|Z). It can be verified that S(t1, t2, d|Z) is a trivariate 

survival function (see supplementary material, Section S1.1). The copula function A[2]( ⋅ ) in 

Equation (2) is assumed to be invariant to the covariates Z in this article. However, it can be 

extended to be covariate-dependent as discussed in Section 5.

The association parameter θ(Z) characterizes the correlation between (T1, T2) and D 
conditional on Z. The domain of θ(Z) depends on the corresponding copula family. For 

example, two widely used Archimedean copula families and their parameter spaces Θ are:

• Clayton copula: A[2](u, v, θ) = max u−θ + v−θ − 1 −1/θ, 0 , Θ = [−1, ∞)\{0};

• Frank copula: A[2](u, v, θ) = −1
θ log 1 + (exp( − θu) − 1)(exp( − θv) − 1)

exp( − θ) − 1 , Θ = ℝ\ 0 .

The Kendall rank correlation coefficient (Kendall’s tau) is a widely used scale-invariant 

measure of the correlation between variables and the metric is used in the presentation of 

the numerical results in Sections 3 and 4. Kendall’s tau lies in [−1, 1], where the value 

1 corresponds to perfect concordance and −1 corresponds to complete discordance. The 

correspondence between the association parameter θ in a bivariate Archimedean copula and 

Kendall’s tau is τ = 4∫0
1∫0

1A[2] w1, w2; θ A[2] dw1, dw2; θ − 1.

Note that S12(t, 0|Z) = Pr(T1 ≥ t|Z) and S12(0, t|Z) = Pr(T2 ≥ t|Z) are the marginal survival 

functions of T1 and T2 conditional on Z, respectively. Denote Sj(t|Z) = Pr(Tj ≥ t|Z) for j = 1, 

2. The model in Equation (2) induces the joint conditional model of Tj and D:

Pr T j ≥ tj, D ≥ d ∣ Z = A[2] Sj tj ∣ Z , SD(d ∣ Z); θ(Z) . (3)

We further assume that the conditional joint distribution of (T1, T2) is
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S12 t1, t2 ∣ Z = C[2] S1 t1 ∣ Z , S2 t2 ∣ Z ; θ12(Z) , t1, t2 > 0, (4)

where C[2] ⋅ ; θ12(Z)  is a bivariate function with a dependence parameter θ12(Z). We note 

that C[2]( ⋅ ) can be an Archimedean copula or a non-Archimedean copula such as a 

Gaussian copula. Because S1(·|Z) and S2(·|Z) are survival functions for a fixed Z and 

take values between 0 and 1, Equation (4) is well-defined. The domain of θ12(·) is 

specific to the choice of copula family C[2]( ⋅ ). Let λ̇(r) = dλ(r)/dr for function λ(r), and 

λ a1, a2 r1, r2; ϕ = ∂λ a1 + a2 / ∂r1
a1 ∂r2

a2 r1, r2; ϕ  for function λ(r1, r2; ϕ) with well-defined partial 

derivatives. The likelihood function based on the observed data in Equation (1) is

L S1( ⋅ ∣ ⋅ ), S2( ⋅ ∣ ⋅ ), SD( ⋅ ∣ ⋅ ), θ( ⋅ ), θ12( ⋅ ) ∣ Observed‐Data

= ∏
i = 1

n
( − 1)δ.i + δDiṠD ci ∣ zi

δDi ∂δ . iA[2]
0, δDi

∂u1
δ1i ∂u2

δ2i S12 u1i, u2i ∣ zi , SD ci ∣ zi ; θ zi

= ∏
i = 1

n
( − 1)δ.i + δDiṠD ci ∣ zi

δDi ∂δ . iA[2]
0, δDi

∂u1
δ1i ∂u2

δ2i

× C[2] S1 u1i ∣ zi , S2 u2i ∣ zi ; θ12 zi , SD ci ∣ zi ; θ zi ,

(5)

where δ.i = δ1i + δ2i. Directly maximizing (5) requires intensive computing because of the 

five unknown functions, namely S1(·|·), S2(·|·), SD(·|·), θ(·), and θ12(·). Following the idea of 

the pseudolikelihood estimation procedure under a copula model (e.g., Lawless and Yilmaz 

2011a; Li et al. 2019), we perform the estimation in two stages. In the first stage, we obtain 

consistent estimators of Sj(t|Z), j = 1, 2, and SD(t|Z). In the second stage, we substitute them 

into the likelihood function to obtain the pseudo-MLE for the other parameters. We describe 

the estimation procedure in detail in the next subsections.

2.2.2. Estimation of Marginal Survival Functions SD(t|Z) and Sj(t|Z) for j = 1, 
2—Since observations on the terminating event D are subject to noninformative censoring 

by CA, well-established estimation procedures can be used to estimate SD(·|Z) with the Cox 

PH model or the AFT model. In our simulation studies and the data application, we consider 

the Cox PH model,

SD(t ∣ Z) = exp −H0D(t)eβD
′ Z , (6)

and estimate βD by the partial-likelihood-based procedure and H0D(t) by the Breslow 

estimator (Cox 1972; Breslow 1972). Denote the estimated conditional survival function 

by SD(t ∣ Z). In the absence of covariates Z, we consider consistent estimators such as the 

Kaplan–Meier estimator to estimate the marginal survival function SD(t).

To estimate Sj(t|Z) with the available data, we must account for the informative 

censoring due to the terminating event D. When the copula function A[2]( ⋅ ; θ(Z)) in 

Equation (2) is an Archimedean copula with a generator function ψ(·; θ(Z)), the 

induced model (3) for the joint survival function of Tj and D is Pr(Tj ≥ t, D ≥ t|Z) 

= ψ−1(ψ(Sj(t|Z); θ(Z)) + ψ(SD(t|Z); θ(Z)); θ(Z)) by the definition of the Archimedean 
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copula. Let T j
* = T j ∧ D, the minimum of Tj and D, with conditional survival function 

Sj
*(t ∣ Z) = Pr T j

* ≥ t ∣ Z = Pr T j ≥ t, D ≥ t ∣ Z). Applying the ψ function to both sides of the 

equation above yields ψ Si
*(t ∣ Z); θ(Z) = ψ Sj(t ∣ Z); θ(Z) + ψ SD(t ∣ Z); θ(Z) . Thus,

Sj(t ∣ Z) = ψ−1 ψ Sj
*(t ∣ Z); θ(Z) − ψ SD(t ∣ Z); θ(Z) ; θ(Z) , (7)

denoted by g Sj
*(t ∣ Z), SD(t ∣ Z); θ(Z)  with g(u1, u2; θ) = ψ−1(ψ(u1;θ)−ψ(u2;θ);θ). Similarly 

to D, the observations on T j
* are censored only by CA, the noninformative administrative 

censoring time. Assuming

Sj
*(t ∣ Z) = exp −H0j

* (t)eβj
* ′Z , (8)

βj
* and H0j

* (t) can be estimated through the conventional approach for noninformatively 

censored data. Denote the estimated conditional survival function by Sj
*(t ∣ Z), j = 1, 2.

2.2.3. Estimation of Association Functions θ(Z) and θ12(Z)—Our modeling 

allows flexibility in specifying the association with parameters θ(Z) and θ12(Z) in either 

parametric or semiparametric forms.

Parametric specification.: Both θ(Z) and θ12(Z) can be specified up to a finite number of 

parameters (e.g., Nikoloulopoulos and Karlis 2008). We give examples below:

1. In conjunction with the Clayton copula, consider

log(θ(Z; γ) + 1) = γ′ 1, Z′ ′,
log θ12(Z; β) + 1 = β′ 1, Z′ ′ . (9)

The log(·) link function is adopted because the parameter space Θ for θ and θ12 

in the Clayton copula is [−1, ∞)\{0}.

2. In conjunction with the Frank copula, consider

θ(Z; γ) = γ′ 1, Z′ ′,
θ12(Z; β) = β′ 1, Z′ ′ . (10)

Here γ and β in Equations (9) and (10) are the finite-dimensional parameters to be 

estimated.

Semiparametric specification.: Suppose the covariate vector Z = (Z*′, W)′, where Z* is a 

d1-dimensional vector of covariates, and W is a continuous covariate for which the effect is 

specified as an unknown function. We provide examples below.

1. In conjunction with the Clayton copula, consider

log(θ(Z) + 1) = γ′ 1, Z * ′ ′ + f(W ),
log θ12(Z) + 1 = β′ 1, Z * ′ ′ + ℎ(W ) . (11)

2. In conjunction with the Frank copula, consider
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θ(Z) = γ′ 1, Z * ′ ′ + f(W ),
θ12(Z) = β′ 1, Z * ′ ′ + ℎ(W ) . (12)

The proposed model specifications for θ(Z) and θ12(Z) in Equations (11) and (12) assume 

additive effects of the covariate vector Z* and a continuous covariate W. Alternatively, if 

Z* is a vector of categorical covariates, we can consider a stratified model and approximate 

the effect of W separately for different levels of the categorical covariates. This gives more 

flexibility by allowing different spline specifications for different levels of the categorical 

covariates.

Here, γ = γ0, γ1, …, γd1 ′ and β = β0, β1, …, βd1 ′ are (d1 + 1)-dimensional regression parameters 

belonging to parameter spaces A1 and A2, respectively, where A1 and A2 are compact sets in 

ℝd1 + 1. Both f(·) and h(·) are unspecified smooth functions belonging to space ℳ, which is a 

collection of real-valued functions defined on [a, b] with bounded and continuous first- and 

second-order partial derivatives, and a and b are, respectively, the lower and upper bounds 

of the observation on the covariate W. For the ease of notation, we use f and h to denote 

f(·) and h(·), respectively. We consider approximating f and h using B-splines. Both f and 

h can be specified up to a set of finite-dimensional parameters (i.e., we fix the number and 

location of the knots of the splines), or we could use a sieve approach (e.g., Zhang, Hua, and 

Huang 2010; He, Xue, and Shi 2010; Lu, Zhang, and Huang 2007; Wellner and Zhang 2007; 

Xue, Lam, and Li 2004) that allows the number of knots and basis functions to increase with 

sample size.

For the sieve approach, we define the sieve space as follows. Following Zhang, Hua, 

and Huang (2010), we let a = e0 < e1 < ⋯ < eKn + 1 = b partition [a, b] into K ≡ (Kn + 1) 

intervals IKt = et, et + 1 , t = 0, …, Kn, where Kn is an integer that grows at a rate of nν, 

for 0 < ν < 1, and max1 ≤ k ≤ Kn + 1 ek − ek − 1 = O n−v . Denote the set of partition points 

as En = e1, …, eKn . Let Sn En, Kn, m  be the space of polynomial splines of order m ≥ 1 

consisting of functions satisfying the conditions given in (Zhang, Hua, and Huang 2010, p. 

341). Let ℬn = bj, 1 ≤ j ≤ qn  denote the B-spline for Sn En, Kn, m , where qn = Kn + m. We 

approximate f(w) and h(w) in the form ∑j = 1
qn vjbj(w), and define

ℳn En, Kn, m = mn:mn(w) = ∑
j = 1

qn
vjbj(w), v ∈ Bn, w ∈ [a, b]

as the sieve space for ℳ, where v = v1, …, van ′ is the vector of spline coefficients, and 

Bn ⊆ ℝqn is a feasible domain of the spline coefficients. We abbreviate ℳn En, Kn, m  as ℳn, 

let fn( ⋅ ) ∈ ℳn and ℎn( ⋅ ) ∈ ℳn be the spline approximations to f and h, and let κ ∈ Bn and 

π ∈ Bn be the spline coefficients for fn(·) and hn(·), respectively. Assuming that we are 

given the true marginals of Sj
*( ⋅ ) and SD(·), the remaining estimands in the likelihood are 

(θ(·), θ12(·)), that is, we need to estimate the parameter ζ = (γ, β, f, h) over the parameter 

space ℋ = A1 × A2 × ℳ × ℳ. We look for ζn = γn, βn, f n, ℎn ∈ ℋn = A1 × A2 × ℳn × ℳn that 
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maximizes the likelihood, where ℋn is a sieve space of ℋ. This is equivalent to finding (γ, 

β, κ, π) that maximizes the likelihood over the parameter space ℋn
− = A1 × A2 × Bn × Bn.

Without loss of generality, we use α and α12 to denote the parameters in the assumed 

models for θ(Z) and θ12(Z), respectively. Under the parametric specification of Equation 

(9) or (10), α = γ and α12 = β; under the semiparametric specification of Equation (11) or 

(12), α = (γ, κ) and α12 = (β, π). In the absence of covariates Z, the association functions 

θ(Z) and θ12(Z) reduce to two constant parameters θ and θ12, and the proposed inference 

procedure is still applicable.

2.2.4. Pseudolikelihood Function and Two-Stage Estimation—As given in 

Equation (7), the marginal survival function Sj(t|Z) under model (3) is a known function 

of the conditional survival functions Sj
*(t ∣ Z) and SD(t|Z) together with θ(Z). When θ(Z) and 

θ12(Z) are specified up to finite-dimensional parameters α and α12 as described in Section 

2.2.3, Equation (5) is equivalent to

L S1
*( ⋅ ∣ ⋅ ), S2

*( ⋅ ∣ ⋅ ), SD( ⋅ ∣ ⋅ ), α, α12 ∣ Observed‐Data

= ∏
i = 1

n
( − 1)δ . i + δDiṠD ci ∣ zi

δDi ∂δ . iA[2]
0, δDi

∂u1
δ1i ∂u2

δ2i

C[2] S1 u1i ∣ zi , S2 u2i ∣ zi ; θ12 zi; α12 , SD ci ∣ zi ; θ zi; α

(13)

We propose a pseudo-MLE of (α, α12), the maximizer of Equation (13) 

with SD(t ∣ Z) and Sj
*(t ∣ Z) from Section 2.2.2 plugged in. Specifically, with 

Sj(t ∣ Z) = g Sj
*(t ∣ Z), SD(t ∣ Z); θ(Z; α)  for j = 1, 2, the pseudolikelihood function is 

proportional to

L S1
*( ⋅ ∣ ⋅ ), S2

*( ⋅ ∣ ⋅ ), SD( ⋅ ∣ ⋅ ), α, α12 ∣ Observed‐Data = ∏
i = 1

n
Ψi α, α12 , (14)

where Ψi(α, α12) is given by

( − 1)δ . i + δDi ∂
δ . iA[2]

0, δDi

∂u1
δ1i ∂u2

δ2i C[2] S1 u1i ∣ zi , S2 u2i ∣ zi ; θ12 zi; α12 , SD ci ∣ zi ; θ zi; α ,

for i = 1, …, n. The corresponding partial derivatives in Ψi(α, α12) are provided in Section 

S1.3 of the supplementary materials.

It is much easier to implement this pseudolikelihood estimation procedure than to directly 

maximize the likelihood (5) to obtain the MLE. There may be some expected loss of 

efficiency compared to the setting where Sj(·|Z) and SD(·|Z) are known. Our simulation study 

in Section 3 indicates that the efficiency loss is acceptable in practice.
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Given consistent estimators for Sj
*( ⋅ ∣ Z) and SD(·|Z), we maximize the pseudolikelihood in 

(14), or, equivalently, its log-transformation with respect to α and α12, and thus derive a 

pseudo-MLE:

αn, α12n = argmax α, α12 L S1( ⋅ ∣ ⋅ ), S2( ⋅ ∣ ⋅ ), SD( ⋅ ∣ ⋅ ), α, α12 ∣ Observed‐Data
. (15)

An iterative algorithm to calculate (αn, α12n) is detailed in Section S1.4 of the supplementary 

materials.

This yields θ n(Z) = θ Z; αn  and θ 12n(Z) = θ12 Z; α12n  in either the parametric or 

semiparametric formulation of the association parameters θ(Z) and θ12(Z). Substituting 

θ n(Z), Sj
*(t ∣ Z), and SD(t ∣ Z) into Equation (7) gives a natural estimator for the marginal 

survival function Sj(·|Z):

Sjn(t ∣ Z) = g Sj
*(t ∣ Z), SD(t ∣ Z); θ n(Z) . (16)

Further, an estimator for the joint survival function S12(t1, t2|Z) of (T1, T2) based on 

Equation (4) is

S12n t1, t2 ∣ Z = C[2] S1n t1 ∣ Z , S2n t2 ∣ Z ; θ 12n(Z) . (17)

2.3. Asymptotic Properties

The following propositions establish the consistency and asymptotic normality of the 

proposed estimator. The conditions and proofs of these propositions are detailed in 

the supplementary materials (Parts A–C of the Appendix). The proofs of Propositions 

1–3 follow the arguments in Li et al. (2019) for deriving the asymptotic properties 

of their estimators in situations without the covariates Z. Proposition 4 presents 

asymptotic properties for the resulting sieve estimators when θ(·) and θ12(·) are specified 

semiparametrically, such as by Equations (11) and (12), so that the effect of a continuous 

covariate is approximated by B-splines and the number of bases increases with sample size. 

We provide its proof adapting the derivations in Zhang, Hua, and Huang (2010), Xue, Lam, 

and Li (2004), and Chen, Fan, Tsyrennikov (2006).

Proposition 1.

Under the regularity conditions (RC1)–(RC4) in the Appendix, and provided that Sj
*(t ∣ z)

and SD(t ∣ z) satisfy the condition (AC) in the appendix, θ n(z), θ 12n(z) a . s .
 

θ(z), θ12(z)  and 

n θ n(z), θ 12n(z) ′ − θ(z), θ12(z) ′ d N 0, AV θ, θ12(z)  as n → ∞, for a fixed z,.

A natural variance estimator of AV θ, θ12(z) is presented in the Appendix. It uses Huber’s robust 

sandwich estimator (Huber 1967) for the finite-dimensional parameter estimators αn and α12n. 

Similarly to Lawless and Yilmaz (2011a), we can also estimate the variance of θ n(z), θ 12n(z) ′
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via a bootstrap approach. The variance estimator can be used to construct a Wald-type (1 − 

α) × 100% confidence interval in the standard fashion or assess the independence through 

testing H0 : θ(z) = 0 or θ12(z) = 0 by a Wald test.

Proposition 2.

Under the regularity conditions (RC1)–(RC4) and provided that Sj
*( ⋅ ∣ z)

and SD( ⋅ ∣ z) satisfy the condition (AC), Sjn(t ∣ z) a . s . Sj(t ∣ z) uniformly, and 

n Sjn(t ∣ z) − Sj(t ∣ z) w Gj(t ∣ z) with t ∈ [0, vj] for any z in the region of the covariates 

Z as n → ∞. Here Gj(t ∣ z) is a Gaussian process with mean zero and variance function 

σj
2(t ∣ z) as defined in (Andersen et al. 1993, p. 506).

Proposition 3.

Under the regularity conditions (RC1)–(RC4) and provided that Sj
*(t ∣ z) and 

SD(t ∣ z) satisfy the condition (AC), Sn t1, t2 ∣ z a . s . S t1, t2 ∣ z  uniformly, and 

n Sn t1, t2 ∣ z − S t1, t2 ∣ z w G t1, t2 ∣ z  with t1, t2 ∈ [0, v1] × [0, v2] for any z in the region 

of the covariates Z as n → ∞. Here G t1, t2 ∣ z  is a Gaussian field with mean zero and 

variance function σ2(t1, t2|z).

When θ(·) and θ12(·) are specified semiparametrically and the effect of covariate W is 

approximated by B-splines (De Boor 1978, p. 145) using a sieve approach as described 

in Section 2.2.3, we establish the asymptotic properties as follows. Following the 

semiparametric model specification as given for Equation (11) or (12), first we define an 

L2 metric on the parameter space ℋ defined in Section 2.2.3. Let ∥a∥ be the Euclidean 

norm of a vector a, and for a random vector X P where P is a probability measure, and 

λ(X)
2

= ∫ λ2dP
1
2  be the L2(P) norm of a function λ. For any ζ1, ζ2 ∈ ℋ, define a distance 

d(ζ1, ζ2) as

d ζ1, ζ2 = ζ1 − ζ2 ℋ

= γ1 − γ2
2 + β1 − β2

2+ f1 − f2 2
2 + ℎ1 − ℎ2 2

2 1/2 .

Denote the sieve pseudo-MLE of ζ = (γ, β, f, h) by ζ n
ps = γn, βn, f n, ℎn . Let Kn = On nν , 

where ν satisfies 1/[2(1 + p)] < ν < 1/(2p). Further, let Gj(t ∣ z) and G t1, t2 ∣ z  be Gaussian 

processes with mean zero; the closed forms of the variance functions are generally not 

available (Chen, Fan, and Tsyrennikov 2006) but can be estimated via a bootstrap approach.

Proposition 4.

Under the regularity conditions (RC1)–(RC4) and (SC1)–(SC4) given in the Appendix, and 

provided that Sj
*(t ∣ z) and SD(t ∣ z) satisfy the condition (AC), the following results hold as n 

→ ∞.
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i. Let ζ0 denote the true value of ζ. d ζ n
ps, ζ0 = Op n−min(pv, (1 − v)/2) , which implies 

that if ν = 1/(1+2p), d ζ n, ζ0 = Op n−p/(1 + 2p) ; this is the optimal convergence 

rate in the nonparametric regression setting.

ii. For any fixed z, let θ n(z) and θ 12n(z) be the plug-in estimators of the 

association parameters following their semiparametric model specification 

(e.g., Equation (11), (12)). Then we have θ n(z), θ 12n(z) a . s θ(z), θ12(z)

and n θ n(z), θ 12n(z) ′ − θ(z), θ12(z) ′ d N 0, AV θ, θ12(z) , where AV θ, θ12(z) can be 

estimated via a bootstrap method.

iii. For any fixed z, Sjn(t ∣ z) a . s . Sj(t ∣ z) uniformly, and 

n Sjn(t ∣ z) − Sj(t ∣ z) w Gj(t ∣ z) for t ∈ [0, vj], j = 1, 2.

iv. For any fixed z, Sn t1, t2 ∣ z a . s . S t1, t2 ∣ z  uniformly, and 

n Sn t1, t2 ∣ z − S t1, t2 ∣ z w G t1, t2 ∣ z  for t1, t2 ∈ [0, v1] × [0, v2].

3. Simulation Studies

We conducted simulation studies to verify the consistency, efficiency, and robustness of the 

proposed pseudo-MLE. For comparison, we evaluated the MLE of (θ(z), θ12(z)) derived 

from the likelihood function (5) using the true survival functions Sj(·|Z), j = 1, 2 and SD(·|

Z). We also calculated the naïve estimates obtained by maximizing (5) after replacing the 

marginal survival functions with their Kaplan–Meier estimates (in the absence of covariates) 

or estimates under the Cox PH model (in the presence of covariates). Note that, in the 

settings that we focus on, the MLE is not applicable since the true survival functions Sj(·|Z) 

and SD(·|Z) are unknown in practice, and the naïve estimator can be biased because of the 

informative censoring.

3.1. Simulation Settings

We considered n independent units, and the primary outcome of the bivariate event 

time, denoted (T1, T2). We set the sample size n to 500, 1000, or 2000. The generated 

observations on (T1, T2) may be censored by either the terminating event time D or the 

administrative time CA, whichever occurs first. That is, the study censoring time C = D ∧ 
CA. We started with situations without covariates and then examined the performance in the 

presence of covariates. The following four settings were simulated. We report the results of 

Settings 1 and 4 in Section 3.2. Details for Settings 2 and 3 are presented in Sections S2.2 

and S2.3 of the supplementary materials.

Setting 1 (Study of consistency and efficiency): The data were generated from nested 

Archimedean copula functions (Joe 1997) that allowed different association 

parameters in the bivariate Archimedean copula A[2]( ⋅ ) in Equation (2) and 

in the bivariate copula C[2]( ⋅ ) in Equation (4).
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Setting 2 (Study of robustness): The data were generated from trivariate Gaussian 

copula functions to check that the proposed approach was robust to model 

misspecification when the true copula was non-Archimedean.

Setting 3 (Study of flexibility): We explored the flexibility of our approach in 

situations where the distribution of the bivariate event times followed a 

Gamma frailty model.

Setting 4 (Evaluating covariate effects): The data were generated in a regression 

setting to examine the performance of the estimators with parameters 

that represented the covariate effects on the association parameters and 

conditional survival functions.

3.2. Data Generation and Simulation Results

3.2.1. Setting 1: Study of Consistency and Efficiency—The observed data {[(u1i, 

δ1i), (u2i, δ2i), (ci, δDi)] : i = 1, …, n} were generated as follows:

Step (a). We generated independently the trivariate random variables (v1i, v2i, v3i) 

for i = 1, …, n from one of the three Archimedean copula functions, 

namely the Clayton, Gumbel, or Frank copula, using the R package copula 

(Hofert and Mächler 2011). The values of the parameters (θ, θ12) in A[2]( ⋅ )
and C[2]( ⋅ ) were chosen so that the corresponding Kendall’s tau (τ, τ12) was 

(0.4, 0.5) or (0.3, 0.8), to simulate different levels of dependence.

Step (b). Let Sj tji = vji = g Sj
* tji , SD tji , θ  with g(·) as defined in Equation (7) for 

j = 1, 2. Using the survival functions of the Weibull distributions Sj
*( ⋅ )

and SD(·), we solved for tji. The scale and shape parameters, together with 

the regression coefficients, were predetermined. Solving SD(di) = v3i, we 

obtained the terminating event time di for i = 1, …, n.

Step (c). We generated the administrative censoring times cAi independently from 

(v1i, v2i, v3i), from an exponential distribution with the parameter chosen to 

give an overall censoring rate of approximately 45%, 50%, and 20% for T1, 

T2, and D, respectively. We let ci = di ∧ cAi with the indicator δDi = I(di ≤ 

cAi) and uji = tji ∧ ci with the indicator δji = I(tji ≤ ci).

Table 1 summarizes the resulting estimates using pseudo-MLE, the unachievable MLE, and 

the naïve estimator, based on 500 repetitions under the nested Clayton and the nested Frank 

models. The sample means of the pseudo-MLE and MLE estimates were close to the true 

parameter values, especially for large n. This verified the consistency of the pseudo-MLE 

and MLE approaches. On the other hand, we observed moderate but visible differences 

between the naïve estimates and the true value in general; these differences persisted as the 

sample size increased. When n = 2000, the absolute differences between the sample means 

of τ  and its true value were more than twice the corresponding sample standard errors. The 

naïve estimates of τ12 did not deviate substantially from the true values and were closer for 

the nested Frank model than the nested Clayton model. The moderate deviation associated 

with the naïve estimates may be in part due to the conversion from the estimated copula 

parameters θ and θ12 to τ and τ12, respectively. The ranges of θ and θ12 were wider in 
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general than the [−1, 1] range of Kendall’s tau, so the latter did not reflect the differences as 

much as the copula association parameters did. We report Kendall’s tau because it allows us 

to compare associations across different copula families. The results for θ and θ12 are given 

in Table S1 in Section S2.1 of the supplementary materials. The sample means associated 

with the naïve estimator for θ and θ12 showed larger differences from the true values. 

The sample standard errors of the pseudo-MLE were slightly elevated compared to their 

MLE counterparts, suggesting that the efficiency loss of the pseudo-MLE was modest in the 

settings we examined. The average estimated standard errors for the pseudo-MLE estimators 

were in general close to their empirical counterparts. We also evaluated the Type I error and 

power of a Wald-type test for the null hypothesis of H0 : θ = 0 or H0 : θ12 = 0, and the 

results are given in Table S2 of the supplementary materials (Section S2.1).

Figure 1 presents estimates of the marginal survival function S1(·) for varying sample 

sizes. The data were generated under the nested Clayton copula model with Kendall’s τ = 

0.4 for the outer copula A[2]( ⋅ ) and τ12 = 0.5 for the inner copula C[2]( ⋅ ). The estimated 

survival functions for the proposed pseudo-MLE and the naïve approach together with their 

approximate 95% confidence bands (CBs) are presented along with the true curves. The 

curve of the true S1(·) was covered by the CB from the pseudo-MLE approach, but it 

deviated from those using the naïve approach in every case. Similar patterns appeared for the 

estimates of S2(·). For τ = 0.3 and τ12 = 0.8, and when the data were generated from the 

nested Frank models, similar patterns were observed; see supplementary material, Section 

S2.1.

3.2.2. Setting 4: Evaluating Covariate Effects—Settings 1 to 3 examined the 

performance of our approach with constant association parameters θ and θ12. Setting 4 

assessed its performance in settings where covariates Z were incorporated into either the 

association parameters θ(·|Z) and θ12(·|Z) or the marginal survival functions Sj(·|Z) and 

SD(·|Z). We generated n independent samples by following the steps in Setting 1 with the 

following two modifications:

Modification 1.: We generated realizations of Z and obtained θ(z) and θ12(z) as follows:

Case 1. We used θ12(zi) = exp(a1z1i + a2z2i) − 1, θ(zi) = exp(a3z1i + a4z2i) − 1. We 

generated {(z1i, z2i), i = 1, …, n} from the population Z = (Z1, Z2)′ with 

Z1 following the Uniform [1, 2] distribution and Z2 following the Bernoulli 

(1/3) distribution. We set α = (a1, a2)′ = (0.3, 1)′ and α12 = (a3, a4)′ = (0.7, 

2)′.

Case 2. We used θ12 zi = exp sin 3
2πzi + 4, θ zi = exp sin 2πzi + 1, and 

independently generated zi, i = 1, …, n from the Uniform [0, 1] 

distribution.

In Case 1, θ(z) and θ12(z) were specified in the true functional form and estimated 

parametrically. In Case 2, θ(z) and θ12(z) were estimated semiparametrically by B-spline 

approximation.
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Modification 2.: In step (b) of Setting 1, we replaced marginal functions Sj(t), j = 1, 2, by 

the conditional survival functions

Sj tji ∣ zi = vji = g S0j
* tji

exp βj
* ′zi , S0D tji

exp βD
′ zi ; θ zi ,

where β1
* = 2, β2

* = 2, βD = 2, g(·) was the function defined in (7) and 

SD di ∣ zi = v3i = S0D di
exp βD

′ zi .

We evaluated the proposed estimators for θ(·) and θ12(·) under four different modeling 

assumptions, where θ(·) and/or θ12(·) are assumed to be scalar(s) or function(s) of the 

covariates Z. That yielded four scenarios, labeled by Scenarios (I) to (IV). Assuming both 

θ(·) and θ12(·) to be functions of Z (Scenario (IV)) corresponds to the real data-generation 

process. Assuming θ and/or θ12 to be scalars (Scenarios (I)–(III)) may be interpreted 

as estimating the average dependence strength across all levels of covariates, which is 

a common approach when a constant copula association parameter is assumed. For the 

parametric estimation, we used the true forms for θ(·) and θ12(·); for the semiparametric 

estimation, we used a B-spline approximation.

For better visualization and ease of comparison, we converted θ(·) and θ12(·) to Kendall’s 

tau τ(·) and τ12(·). In Figure 2 we present the pseudo-MLE obtained in the four scenarios 

above for Case 2. The estimated τ(·) and τ12(·) in Scenario (IV) were close to the true 

functions. The true curves were fully covered by the CB associated with the pseudo-MLE. 

When the association parameters were treated as scalars in Scenarios (I) to (III), they 

represented an average of the association across the covariates. Similar patterns were 

observed for Case 1 (see Section S2.4.1 of the supplementary materials). The estimates of 

τ(·) and τ12(·) using the naïve and MLE approaches together with the pseudo-MLE estimates 

of α and α12 are reported in Section S2.4 of the supplementary materials.

Figure 3 presents the estimated conditional survival function S1n(t ∣ Z) given in (16), 

corresponding to semiparametric estimation for Case 2. The naïve estimates and the true 

survival functions are also presented. The naïve estimates were biased in all scenarios, while 

the pseudo-MLE-based CBs covered the true curve in Scenario (IV) when the models for 

θ(·) and θ12(·) were correctly specified. The pseudo-MLEs of θ(·) and Sj(t|Z) were close 

to the true values in Scenario (III) when the model for θ(·), the parameter that quantifies 

the association in model Sjn(t ∣ Z), j = 1, 2, was correctly specified. However, the marginal 

estimates Sjn(t ∣ Z) for Scenarios (I) and (II) were biased since θ(·) in these scenarios is 

treated as a scalar for all values of z. This confirms that incorrectly treating the copula 

dependence parameter as a constant may result in biased conditional marginal estimates. 

Additional results for Case 1 and Case 2 are given in Section S2.4.1 and S2.4.2 of the 

supplementary materials, respectively.
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4. Analysis of Cancer Survivorship Study Data

4.1. Preliminary Analysis

The cancer survivorship study included adult females diagnosed with stage I, II, or III 

breast cancer between January 1, 1989 and December 31, 2011 in BC, Canada. The 

subjects were 18 years or older and residents of BC, and identified from the provincial 

cancer registry. The relevant demographic information, death, and RSC-related data to 

December 31, 2014 were extracted from the registry and clinical databases. The records of 

CVD-related hospitalizations from January 1, 1986 to December 31, 2013 were extracted 

from the hospital separations database of BC (Canadian Institute for Health Information 

2011).

Taking each subject’s date of breast cancer diagnosis as her time origin, we considered the 

event time T1 to be the time from diagnosis to RSC, the event time T2 to be the time from 

diagnosis to her first subsequent CVD-related hospitalization, and the death time D to be 

the time from diagnosis to death. Here T1, T2, and D had a common time origin, which 

was the time of diagnosis, and they were the lengths of the intervals from diagnosis to RSC, 

CVD, and death, respectively. The availability of information on T1 and T2 was subject to 

censoring by death or the end of follow-up. We formulated each subject’s censoring time 

as C = D ∧ CA, where D was the time to death and CA was the time at the end of the 

administrative window.

Table 2 gives the descriptive summary information, overall and by age at cancer diagnosis 

(age), the cancer stage at diagnosis (stage: early (stage I or II) vs. late (stage III)), the type of 

treatment received in addition to surgical procedures (treatment: chemotherapy and radiation 

therapy, chemotherapy only, radiation therapy only, no chemotherapy or radiation therapy), 

and the year of birth (era: era 1 (1900–1927), era 2 (1928–1945), era 3 (1946–1986)).

In the preliminary analysis, we estimated S1
*(t ∣ Z), S2

*(t ∣ Z), and SD(t|Z) with the Cox PH 

model, that is, the conditional distribution of time to T1 ∧ D, T2 ∧ D, and D. Here, Sj
*(t ∣ Z)

is a common metric in the biomedical literature for the composite endpoint Tj ∧ D, j = 1, 

2. It provides some insight into survival time without the disease, RSC, or CVD. Table S11 

in Section S3.1 of the supplementary materials lists the estimated regression coefficients. 

Diagnosis at a late stage, as expected, was associated with a decrease in overall survival 

(hazard ratio for death = e0.879 = 2.40), survival without RSC (hazard ratio = e0.744 = 2.10), 

and survival without CVD (hazard ratio = e0.704 = 2.02). The same pattern was observed 

for those treated with chemotherapy only. Those who were treated with radiation therapy 

only had better survival (both overall and without disease). Compared to receiving no 

chemotherapy or radiation therapy, receiving both was associated with a moderate decrease 

in overall survival and survival without CVD, but not with survival without RSC. This is 

likely a reflection of the disease severity since only low-risk patients or those too sick to 

tolerate chemotherapy are given radiation therapy alone.

4.2. Evaluation of Association Between Event Times

The main goal of the study was to examine the association between the times to CVD 

and RSC in the presence of the potential informative censoring caused by death. Using the 
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approach of Section 2, we performed inference on the association parameter function θ12(·), 

a measure of the association between RSC and CVD, and θ(·), a measure of the association 

of the two event times with death. We carried out both parametric and semiparametric 

modeling of θ(·) and θ12(·). To illustrate, we considered covariates Z = (Z1, Z2), where Z1 is 

a continuous covariate and Z2 is a categorical covariate. The parametric approach followed 

model (9) for the Clayton copula, with Z = (age, Z2) where Z2 was the categorical variable 

of interest and Z1 was age at diagnosis. For example, when Z2 was stage at diagnosis, the 

estimated association functions with the parametric specifications were

log(θ( age ) + 1) = 4.177 − 0.039age  for early stage
3.460 − 0.024age  for late stage ,

and

log θ12(age) + 1 = 1.255 − 0.007age  for early stage
1.199 + 0.002age  for late stage.

Our exploratory analysis indicated that the association was not increasing strictly linearly 

with age. We next considered a more flexible approach, where θ(age) and θ12(age) given z2 

were approximated by cubic B-splines. Figure 4 shows the estimated curves for log(θ(age) 

+ 1) and log(θ12(age) + 1) for both the parametric and semiparametric specifications with a 

given level of Z2 (era). Figure S16 in Section S3.2 of the supplementary materials displays 

the corresponding estimated functions for Kendall’s tau τ(·) and τ12(·) with CBs. The 

association τ between Tj (RSC and CVD times) and D appeared to be roughly the same 

for both early- and late-stage groups, exhibiting a decreasing trend as age increased. This 

indicated an informative censoring due to the terminating event death and highlighted the 

importance of considering informative censoring. Late stage at diagnosis appeared to be a 

significant risk factor for an increased association between the RSC time T1 and the CVD 

time T2. A stronger association of (T1, T2) with D was shown in the younger generation (era 
= 2 and 3) compared to those born earlier (era = 1). This is expected since younger women 

are less likely to die from age-related causes. The estimates of the association with Z2 being 

treatment are provided in Section S3.2 of the supplementary materials.

4.3. Estimation of Sj(t|Z) for j = 1, 2

We estimated the marginal survival functions for T1 and T2 via Equation (16). Figure 

5 presents the estimates of S2(t|Z), the marginal survival function of the time to CVD, 

obtained using the proposed approach (pseudo-MLE) and the naïve approach, i.e., applying 

the Cox PH model directly to the semi-competing risk data {[(uji, δji), (ci, δDi), zi)] : i 
= 1, …, n} for j = 1, 2. Diagnosis at a late stage was associated with a shorter time to 

CVD. Estimates based on the proposed pseudo-MLE approach suggested that those who 

were treated by radiation therapy alone had the longest time to CVD; in contrast, the naïve 

approach indicated no differences in time to CVD across treatment groups. The estimates of 

S1(t|Z) are provided in Section S3.3 of the supplementary materials.
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5. Concluding Remarks and Further Discussion

This article provides a flexible modeling of the association between two event times, and 

an easy-to-implement procedure for estimating the association and the marginal distributions 

when the observations on the event times are subject to potentially informative censoring 

caused by a terminal event. The proposed approach models the dependence between the 

bivariate event time and the informative censoring time through a bivariate Archimedean 

copula (as the outer copula function). The joint survival function of the two event times 

is specified through a copula, which can be different from the outer copula. An alternative 

formulation such as a frailty model can also be used. The proposed approach allows the 

association between the two event times and their dependence on the informative censoring 

time to be different. This provides desirable flexibility in the modeling, and reflects a more 

realistic analysis strategy for practical studies such as the cancer survivorship study, where 

the association between the bivariate event times is weaker than their dependence on the 

informative censoring time.

The function C[2] ⋅ ; θ12( ⋅ )  in Equation (4) can be modeled by the widely used bivariate 

parametric copula functions (e.g., Diao and Cook 2014). When C[2]( ⋅ ) in model (4) 

is assumed to be the bivariate Archimedean copula A[2]( ⋅ ) in model (2), the joint 

survival function of the trivariate event time (T1, T2, D) in Equation (2) becomes 

A[3] S1 t1 ∣ Z , S2 t2 ∣ Z , SD(d ∣ Z); θ(Z) . In such settings, the joint survival function of each 

pair of T1, T2, and D is the same, defined by the bivariate Archimedean copula A[2]( ⋅ ) with 

the two indices equal to the corresponding univariate marginal survival functions. Statistical 

inference is easier to carry out with this approach, but the resulting model can be unrealistic; 

see Li et al. (2019) for more discussion.

The correct specification of the copula models is critical because different models lead 

to different tail dependence. We performed simulation studies to evaluate the robustness 

of the proposed methods under model misspecification. We found that under model 

misspecification the estimates obtained with the Frank copula were closer to the true 

values than those from other copulas. In future investigations, it would be useful to develop 

methods for the copula model selection. One potential approach is to use the likelihood 

ratio test following Lawless and Yilmaz (2011a), and to obtain the p-values via a bootstrap 

procedure.

It is possible to extend the proposed method to allow the Archimedean copula A[2]( ⋅ ) in 

Equation (2) to be covariate-dependent. For a discrete covariate, we can choose covariate-

specific copula models according to its categories, that is, postulating Ae, [2] for e = 1, 

…, E. For a continuous covariate, we may discretize the variable and then proceed with 

category-specific copula models. Adopting such stratified models may lead to efficiency loss 

due to an increase in the number of parameters to estimate. Model selection procedures such 

as a likelihood ratio test may be adapted to choose among different model specifications.

In the cancer survivorship study, the administrative censoring time CA is the length of the 

interval between the year of diagnosis (Wx) and the end of data collection (Wa). While Wa 

is independent of Tj for j = 1, 2, Wx can be correlated with the event times of interest. It 
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thus renders potential informative censoring due to CA in the observations on the Tj’s. The 

analysis in Section 4 accounted for this censoring by conditioning on the cancer stage at 

diagnosis.

We model the joint survival function of (Tj, D), j = 1, 2, accounting for the semi-competing-

risk nature of D. It would be natural to posit a Clayton copula when the times are positively 

correlated. Since Tj ≤ D, the joint survival function in Equation (3) is identifiable for 0 ≤ tj 
≤ d ≤ ∞, the upper wedge where the data are observable (Fine, Jiang, and Chappell 2001). 

If information about the cause of death is available, one may be interested in modeling 

sequentially observed survival times, say, (T1, D1) with D1 the death time caused by RSC. 

In this case, extra care is necessary to account for the induced dependent censoring by D1 

and potential identifiability issues relating to the fact that D1 is observable only if T1 is 

uncensored (Lin 2000; Lin, Sun and Ying 1999; Schaubel and Cai 2004; Cook and Lawless 

2007, sec. 4.4.1). To overcome these challenges, Lawless and Yilmaz (2011b) proposed a 

semiparametric approach based on a bivariate copula model; it included a cure rate feature 

for the marginal distribution of survival time T1 to model the subpopulation who never have 

the first event T1 (see, e.g., Tsodikov, Ibrahim, and Yakovlev 2003).

The type of informative censoring that we consider is a semicompeting risk scenario, 

motivated by our application where death is the informative censoring time. Our method 

is directly applicable to situations with general informative censoring. Specifically, 

denote the censoring time C = C1 ∧ C2, where C1 is independent of the event 

time(s) of interest, and C2 is potentially correlated with the event time(s). Here, 

C1 and C2 are, respectively, analogous to CA, determined by the administrative 

extraction window, and D, the lifetime, potentially correlated to either of the 

times to RSC and CVD. The joint survival function of T1, T2, and C2 can be 

modeled by Pr T1 ≥ t1, T2 ≥ t2, C2 ≥ c2 ∣ Z = A[2] S12 t1, t2 ∣ Z , SC2 c2 ∣ Z ; θ(Z) , and the joint 

distribution of T1 and T2 can be modeled by S12 t1, t2 ∣ Z = C[2] S t1 ∣ Z , S t2 ∣ Z ; θ12(Z) . 

Denote T j
* = T j ∧ C2 for j = 1, 2; then it follows that, analogous to Equation (7), 

Sj(t ∣ Z) = g Sj
*(t ∣ Z), SC2(t ∣ Z); θ(Z) . Since the observations on T j

* and C2 are censored only 

by C1, their distributions can be estimated with conventional approaches.

Although motivated by the cancer survivorship study, our modeling framework is applicable 

to other settings that involve evaluating the covariate effects on the association parameters. It 

can also be extended to other multivariate settings with semi-competing risks. For example, 

in cluster randomized trials, the treatment may affect the dependence parameters (see, e.g., 

Chen, Tchetgen, and Wang 2019), and it would be of interest to produce treatment-specific 

association parameter estimates. We have studied the overall dependence of event times 

through their marginal survival functions, motivated by considerations for the cross-sectional 

nature of the times. Our approach is therefore not immediately applicable to situations 

with time-varying dependence. One may consider modeling the dependence of the two 

corresponding survival processes over time to accommodate such dependence. This is 

another topic for future investigation.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Marginal survival functions: the true curve and estimates with data generated from the 

nested Clayton with τ = 0.4, τ12 = 0.5, and sample size n. The lines represent the true curve 

(solid black), naïve estimates (dashed blue), and the estimates from the proposed approach 

(dotted orange). Shaded areas correspond to confidence bands.
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Figure 2. 
Pseudo-MLEs of τ(z) and τ12(z) and their confidence bands with data generated from Case 

2, using B-spline approximation to θ(z) and θ12(z). Scenarios (I)–(III) correspond to the 

cases where θ(·) and/or θ12(·) were specified as scalar(s). Scenario (IV) corresponds to 

the case where both θ(·) and θ12(·) are approximated by B-spline functions. Solid: truth; 

dashed: estimated.
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Figure 3. 
Estimates of S1(t|z) under Scenarios (I)–(IV) with data generated from Case 2, using B-

spline approximation to θ(z) and θ12(z). In all scenarios, z = 0.3. Scenario (I): θ(z) ≡ θ, 

θ12(z) ≡ θ12; (II): θ(z) ≡ θ; (III): θ12(z) ≡ θ12. Scenario (IV) corresponds to the case where 

θ(·) and θ12(·) are specified by parametric functions. The curves are: truth (black solid), 

pseudo-MLE (blue dashed), and naïve (yellow dotted).
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Figure 4. 
Parametric and semiparametric estimation of association functions with real data. Solid lines 

represent parametric estimates, and dotted curves represent approximation by B-splines with 

corresponding confidence bands in shaded areas. (a),(b): Z2 is stage. (c),(d): Z2 is era.
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Figure 5. 
Marginal survival function estimates of T2 (time to CVD) for early and late stage at 

diagnosis with real data using the proposed approach and naïve Cox PH modeling. Each 

plot shows curves for four treatment groups among those diagnosed at age 49 and born in 

era 2. Shaded areas correspond to confidence bands.
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