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a b s t r a c t

Monitoring of viral signal in wastewater is considered a useful tool for monitoring the
burden of COVID-19, especially during times of limited availability in testing. Studies have
shown that COVID-19 hospitalizations are highly correlated with wastewater viral signals
and the increases in wastewater viral signals can provide an early warning for increasing
hospital admissions. The association is likely nonlinear and time-varying. This project
employs a distributed lag nonlinear model (DLNM) (Gasparrini et al., 2010) to study the
nonlinear exposure-response delayed association of the COVID-19 hospitalizations and
SARS-CoV-2 wastewater viral signals using relevant data from Ottawa, Canada. We
consider up to a 15-day time lag from the average of SARS-CoV N1 and N2 gene concen-
trations to COVID-19 hospitalizations. The expected reduction in hospitalization is adjusted
for vaccination efforts. A correlation analysis of the data verifies that COVID-19 hospital-
izations are highly correlated with wastewater viral signals with a time-varying rela-
tionship. Our DLNM based analysis yields a reasonable estimate of COVID-19
hospitalizations and enhances our understanding of the association of COVID-19 hospi-
talizations with wastewater viral signals.

© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi
Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Wastewater based epidemiology is currently an important tool for monitoring a wide range of behavioral, socioeconomic,
and biological markers. Example of applications include regional/community drug abuse (Feng et al., 2018; Zuccato et al.,
2005, 2008), industrial pollutant chemicals (Rousis et al., 2017), and polioviruses in the Global Polio Eradication Initiative
(Asghar et al., 2014). During infection with the SARs-CoV-2 virus, SARS-CoV-2 ribonucleic acid (RNA) is excreted into the
sewer system via feces, saliva, swabs and/or sputum of infected individuals (Anand et al., 2021; Peccia et al., 2020). This viral
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signal has been successfully detected in the city wastewater surveillance system using the RT-PCR technique (Medema et al.,
2020; Randazzo et al., 2020). As testing of COVID-19 cases is limited, it is helpful to use wastewater surveillance data to track
the prevalence of the COVID-19. Hegazy et al. (2022) and D'Aoust et al. (2021a,b) evaluated the time lagged correlation
between wastewater viral signal and COVID-19 epidemiological data (laboratory positive cases, hospital admissions, ICU
admissions, and deaths). Several studies investigated the possibility of using wastewater viral signals to predict COVID-19
epidemiological data (Galani et al., 2022; D'Aoust et al., 2021a).

A time lag was found to exist between the appearance of increased SARS-CoV-2 RNA signal in wastewater and epide-
miological metrics (Larsen andWigginton, 2020). D'Aoust et al. (2021a) showed that on average, there is an increase in SARS-
CoV-2 viral RNA in wastewater 48 h before the increase is shown in COVID-19 clinical testing, and 96 h before an increase is
seen in hospitalizations. Given the delayed association between COVID-19 indicators and wastewater viral signals, the use of
the distributed lag model (DLM) is appropriate to explore the relationship between wastewater viral signal and COVID-19
epidemiology (Galani et al., 2022; Kaplan et al., 2021; Peccia et al., 2020; Schoen et al., 2022; Xie et al., 2022; Zulli et al., 2022).

DLMs have been widely used in social science (Judge, 1982) and epidemiology (Pope III and Schwartz, 1996). DLMs esti-
mate the current value of the response variable based on the current value and the lagged values of explanatory variables, and
the model has the following form:

EðYt jXt ;Xt�1;…;Xt�pÞ ¼ aþ b0Xt þ b1Xt�1 þ/þ bpXt�p; (1)
Gasparrini et al. (2010) extended this method to distributed lag nonlinear models (DLNM) which consider both nonlinear
associations along the space of the predictor and in the lag dimension, simultaneously. This model has become popular in
recent years and has been successfully applied to different fields. For instance, the lagged effect of air temperature on hospital
admissions (Guo et al., 2021), the lagged association between climate variables and hospital admissions (Pedder et al., 2021),
the lagged association between temperature and mortality (Entezari and Mayvaneh, 2019), and the association between long
term exposures to PM2.5 and risk of acute respiratory infections among children and symptom onset (Larson et al., 2022). The
nonlinear and time varying association betweenwastewater viral signals and COVID-19 hospitalizations is rarely discussed in
current wastewater related literature. To fill this knowledge gap, we evaluated the nonlinear lagged association between
wastewater viral signals and COVID-19 hospitalizations with a rolling correlation analysis, and then subsequently with amore
sophisticated approach using the distributed lag nonlinear model. Since vaccination reduces the risk of hospitalization, we
include vaccine efficacy as a covariate in our model, with a simulation of waning efficacy. Our approach enhances the un-
derstanding of the relationship between wastewater viral signals and COVID-19 hospitalizations and may inform decision
making for allocation of health care resources, as stressors on health systems due to COVID-19 continue.

This paper is organized as follows. Section 2 describes the source of our wastewater surveillance data, hospitalization data,
and vaccination information. Section 3 introduces an extension of the time step correlation analysis in Hegazy et al. (2022),
and Section 4 introduces the distributed lag nonlinear model analysis with the consideration of simulated vaccination
effectiveness against hospitalizations. In Section 5, we summarize the benefits of our project, and we also list the limitations
of our model and some future research opportunities.

2. Data sources and descriptions

2.1. Wastewater surveillance data

We use data from Ottawa, Ontario, Canada, which is a city with a population of approximately 1 million inhabitants.
Currently, wastewater samples at Ottawa are collected 7 days aweek, analyzed and reported to public health and uploaded to
github 5 days a week from the Robert O. Pickard Environmental Centre. This treatment facility serves 91.6% of Ottawa's
population, and thus has good coverage for the related public health data provided by the Ottawa Public Health Unit. Pio-
neering research is being carried out at both the University of Ottawa and CHEO Research Institute on the methodology for
measuring viral RNA in wastewater. The Ottawa data for viral copies of N1 and N2 genes are normalized using the biomarker
pepper mild mottle virus (PMMoV). Detailed methodology addressing issues related to variation in wastewater surveillance
are further described in D'Aoust et al. (2021a) and at https://613covid.ca/model/wastewater/. Thewastewater data is available
to download from the Canadian Open Wastewater Database, also called The Public Health Environmental Surveillance
Database (PHESD), available at https://github.com/Big-Life-Lab/PHESD. During the 881 days in our study period, from June
16th, 2020, to November 13th, 2022, viral copies of N1 and N2 genes are measured on 744 days. The 60 missing dates occur
mostly between June and September 2020, since daily collection was not started until September 2020. Arabzadeh et al.
(2021) suggest that the spline method is a robust approach to cope with missing data in wastewater surveillance. Given
that the sampling frequency and detection techniques of wastewater surveillance from different cities might be different, the
imputation of the missing data inwastewater surveillance may need further investigation, e.g. with multiple sampling states,
Dai et al. (2022) applied functional principle components analysis to impute missing values in wastewater surveillance data.
For this project, 60 missing values of viral load were estimated by means of a smoothing spline regression. The average of
normalized N1 and N2 gene concentrations was used to measure the wastewater viral signals, since they are both measuring
the presence of SARS-CoV-2 in the wastewater.
618
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2.2. COVID-19 hospitalization data

Data for COVID-19 hospitalizations are taken from the Open Ottawa dataset: COVID-19 Demographics and Source of
Infection for Cases, Hospitalizations and Deaths, available at https://www.ottawapublichealth.ca/en/reports-research-and-
statistics/daily-covid19-dashboard.aspx. From this dataset we used the variable, ‘Cases_Currently_in_Hospital’, the count
of current hospitalizations as the response variable for our model in Section 4.2. This variable indicates the number of COVID-
19 related patients who are still in hospital on a given day.

2.3. Vaccination information

Vaccination data for the Ottawa Public Health region is also considered in our analysis and is taken from the Ontario Data
Catalogue, COVID-19 Vaccine Data by Public Health Unit, available here https://data.ontario.ca/dataset/covid-19-vaccine-
data-in-ontario/resource/2a362139-b782-43b1-b3cb-078a2ef19524.

3. Correlation analysis

3.1. Motivation

During the 881 days of the study period (June 16, 2020, to November 13, 2022), the wastewater viral signal reached levels
at or above 0.0001 copies/copies PMMoV on 681 days, 0.0002 copies/copies PMMoV on 524 days, 0.0005 copies/copies
PMMoV on 252 days, 0.001 copies/copies PMMoV on 57 days, and 0.002 copies/copies PMMoV on only 8 days.

We observed that the trend of wastewater viral signal precedes the trend of COVID-19 hospitalizations, but there is much
more variability in the wastewater viral signal, as day to day measurements fluctuate widely. We also observed that this
association is not consistent over different waves (Fig.1). For example, the count of COVID-19 hospitalizations aligns well with
wastewater viral signals during the early waves through to the Alpha wave (June 2020, to June 2021), but the relationship is
weak during the Delta wave (July 2021 to December 2021). Furthermore, during the Omicron BA.1 wave (December 2022 to
February 2022), a relatively low level of wastewater viral signal was followed by a high level of COVID-19 hospitalizations,
whereas during the Omicron BA.2 wave the opposite was observed. As noted in Hegazy et al. (2022), the reason for the lower
hospitalizations during the BA.2 wave may be due to a combination of factors including the timing of the vaccination
campaign for 3rd doses, and a high level of immunity from recent BA.1 infections.

Hegazy et al. (2022) performed a time step correlation analysis to evaluate the Spearman's rank correlation between the 5-
day and 3-day midpoint average of wastewater viral signals and 5-days midpoint average of COVID-19 epidemiological data
(laboratory positive cases, hospital admissions, ICU admissions, and deaths) with different lags, for each wave. In this section,
we extend this time step correlation analysis by systematically calculating the Spearman's rank correlation between COVID-
19 hospitalizations and the moving average of wastewater viral signals by allowing different time windows for the moving
average of wastewater viral signals, different lag days, and breaking the study period into different time frames based on the
availability of vaccines and the arrival of the more transmissible Omicron variant.

3.2. Method

The approach described below investigates the following questions: 1) What is the optimized choice of t1 and t2 in terms
of the correlation between wastewater viral signal and COVID-19 hospitalization in each of the three periods? 2) How does
the optimized correlation argmaxt1;t2 ðRðt1; t2ÞÞ between wastewater viral signal and COVID-19 hospitalization vary over
time? 3) How do the values of t1 and t2 vary over time? We used the idea of rolling correlation with 100 days as the rolling
window and calculate Spearman's correlation between wastewater viral signals and COVID-19 hospitalizations. By using
Spearman's correlation, we are able to identify the monotonic association between these variables rather than the linear
Fig. 1. 7-day moving average of N1eN2 average viral signal and COVID-19 hospitalizations counts.
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association. Let t1 be the time-lag betweenwastewater viral signals and COVID-19 hospitalizations; t2 be the timewindow of
the moving average (MA) of the wastewater viral signals;Wt be the wastewater viral signals on day t, t ¼ 1, 2,…, 100 for each
rolling window; Yt be the number of COVID-19 hospitalizations on day t. For each rolling window, we perform the following
algorithm.

Algorithm 1.

Here MAt2 ðWÞt is the moving average of the wastewater viral signal on day t over t2 days. R(t1) is the cross correlation
between COVID-19 hospitalizations and t2 days moving average of wastewater viral signals using Spearman's method.
rkðMAt2 ðWÞiÞ is the rank of the MAt2 ðWÞi within the given rolling window, this rank is from 1 to 100 and the average
r
̄
kðMAt2 ðWÞiÞ ¼ 50:5.
Note that to calculate the moving average of the wastewater viral signal on day i, we use only historical data from day i, i�

1,…, i� t2 and the optimized correlations are obtained when the hospitalizations on day i, Yi aligns with ðWi�t1 þWi�ðt1þ1Þ þ
;…;Wi�ðt1þt2ÞÞ=t2.

3.3. Results

Table 1 shows the results of the correlation analysis for 3 selected rolling windows as an example. The columns titled
optimized t1 and the optimized t2 show the value of t1 and t2 which maximize the Spearman's correlation between the
moving average of the wastewater viral signals and COVID-19 hospitalizations in the corresponding period. For example, the
first row shows that during the period June 16th, 2020, to September 23rd, 2020, a 17-day moving average of the wastewater
viral signal with 1 day lagged between wastewater signal and hospitalizations had the highest optimal correlation.

The value of t1 þ t2 represents the furthest time lag used to construct the optimized correlation with wastewater viral
signals and COVID-19 hospitalizations.We observed that the optimized t1þ t2 and the optimized correlation vary across time
(Fig. 2).

Recall that the optimized correlations are obtained when the hospitalizations on day i, Yi are aligned with ðWi�t1 þ
Wi�ðt1þ1Þ þ ;…;Wi�ðt1þt2ÞÞ=t2. The value of the optimized t1 þ t2 shown in Fig. 2 has a rapidly oscillating structure. By
manually checking those dates, we found that the value of the optimized t1 þ t2 increases while COVID-19 hospitalizations
are on the way up, and decreases while COVID-19 hospitalizations are on the way down. Around Aug 2020, Nov 2021, Dec
2021, and mid-Feb 2022, the value of the optimized t1 þ t2 have small values which suggest that individuals are admitted to
hospital quickly during those periods. Interestingly, during the second half of the Delta period, the values of the optimized
t1 þ t2 are large, which may indicate that individuals are admitted to hospital more slowly. We also show the optimized t1
and t2 in the third plot in Fig. 2. We observed that the curve of optimized t1 is flatter than the curve of optimized t2 over time.
t1 is the time lag between hospitalizations and the smoothed wastewater viral signals, which varied between 1 and 10 days,
for themost part, but was as large as 15 days during the Deltawave. t2 is the timewindowused to smooth out thewastewater
viral signal, and it rapidly oscillates when the daily wastewater viral signals change fast. The correlation betweenwastewater
viral signal and COVID-19 hospitalizations is overall very high, and this confirms the monotonic association between
wastewater viral signals and COVID-19 hospitalizations. The increases in wastewater viral signals reflect the increases in
COVID-19 hospitalizations in the future. However, there was a noticeable large drop for the optimized correlation. During the
periods from July 2021 to Oct 2021, COVID-19 hospitalizations are weakly correlated with wastewater viral signals. This
finding is similar to the results in Hegazy et al. (2022).
Table 1
Example of optimization of t1 and t2 from the rolling correlation process.

Period Optimized Optimized Optimized

t1 t2 R(t1, t2)

2020-Jun-16 to Sep-23 1 17 .773
… … … …

2020-Aug-01 to Nov-09 5 11 .852
… … … …

2021-Aug-09 to Nov-11 18 3 0.126
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Fig. 2. The optimized correlation over time (upper plot), the optimized t1 þ optimized t2 over time (middle plot), and optimized t1, t2 over time. Smoothed using
cubic smoothing spline.

K.K. Peng, E.M. Renouf, C.B. Dean et al. Infectious Disease Modelling 8 (2023) 617e631
4. Nonlinear model with random lag

4.1. Vaccination information

A major influence on the time varying correlation between wastewater signals and hospitalizations is popular immunity
from vaccination or infection. The time varying correlation observed might be caused by changing levels of population im-
munity after COVID-19 vaccination campaigns. The COVID-19 vaccinewas first available in Jan 2021 in Ottawa. The percentage
of the fully vaccinated (at least two doses) population reached 60% on July 18th, 2021, and the percentage of those boosted
over age four (at least 3 doses) reached 60% at Jan 20th, 2022.We consider the vaccine effectiveness (VE) as a numeric variable
measuring how well vaccination protects people against hospitalization at the population level.

It is important to investigate whether waning vaccine effectiveness might influence our model examining the relationship
between wastewater viral signal and hospitalizations. However, without having detailed individual level vaccination infor-
mation, we consider a simplified approach. Specifically, for each dose of the vaccine, we simulated the VE curve across our
study period (June 16th, 2020, to November 13th, 2022) based on assumptions of effectiveness as described in the three
scenarios below.

Let vijs be the VE of the jth vaccine received on day i, to day s, where the i and s take values from 1 to 881. The value of VE is
between 0 and 1 and vijs ¼ 0 when s < i, vijs 2 (0, 1] when s � i, for instance, the vaccine received on day 10 will not count
towards effectiveness on day 1. By adding up all v,,s, we obtain V*

s , the simulated number of cumulative vaccine doses which
are still effective against hospitalizations on day s

X881

i¼1

XNi

j¼1

Vijs ¼ V*
s ; (3)

where Ni represents the number of vaccine doses received on day i.
4.1.1. Scenario 1
We first make a strong assumption that each dose of the vaccine will contribute to reduction of COVID-19 hospitalizations

immediately and will not wane over time. Under this scenario, vijs ¼ 1 for all s � i, V*
s ¼ Vs for all s ¼ 1, …, 881.

4.1.2. Scenario 2
We weaken our assumption to assume that the jth vaccine received on day i will contribute to reduction of COVID-19

hospitalizations after T days, and the vaccine effectiveness against hospitalization starts at 100% and decreases q percent-
age per day where T and q are random for each dose of the vaccine. Under these assumptions:

vijs ¼
8<
:

0 s� i< Tij;
1 s� i ¼ Tij;
vijðsþ1Þ � qijðs� ðiþ TijÞÞ s� i> Tij:
Ssentongo et al.’s meta-analysis (Ssentongo et al., 2022) found eleven studies reporting vaccination effectiveness starting
within 7 days of the second dose of the mRNA vaccine, and two studies reporting VE starting after 14 days of the second dose
of mRNAvaccines. They also conclude that protection of vaccination against severe COVID-19 remained high through 175 days
after vaccination, and the estimated VE was 90% (89e92%) at 5 months following vaccination. In order to allow for individual
variability, we further assume that T and q are both random and follow a normal distribution T ~ N(14, 32), and q ~ N(0.1%,
0.01%2) for all i, j. By applying this scenario, the VE of a single dose will be centered around 82% after 194 days.
621
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4.1.3. Scenario 3
A drawback of scenario 2 is that Ssentongo's meta-analysis (Ssentongo et al., 2022) was conducted before the emergence

of the Omicron variant. The VE against severe disease after two doses has been found to be lower against the Omicron variant
(Andrews et al., 2022; Thompson, 2022). Ferdinands et al. (2022, p. 379) evaluated the VE against COVID-19 hospitalizations
during the Omicron period by different age groups, vaccine product, and immunocompromised status. Therefore, we simulate
scenario 3 based on the adjusted VE in Table 2 in Ferdinands et al. (2022, p. 379).

First, we keep the assumption that each dose of the vaccine will contribute to the reduction of COVID-19 hospitalizations
after T days. In addition, we consider that dose 1, dose 2, dose 3, and dose 4 are different andwe add a superscript to represent
dose 1e4, e.g. vðkÞijs represents the VE of the dose k. The values of vðkÞijs are shown in Table 2.

The V*
s under different scenarios are shown in Fig. 3. The initial drop at the start of scenario 3 represents the drop in VE

against severe disease with the arrival of the Omicron variant. We noticed that depending on our assumptions of scenario 3,
the cumulative VE is currently decreasing, because vaccine uptake by the population of Ottawa has declined. The average
number of daily doses received by the Ottawa population was over 3000 through the pre-Omicron period, and it declined to
less than 2000 in the last two month of the study period.
4.2. Distributed lag nonlinear model

Given the complexity of the nonlinear association between wastewater viral signal and COVID-19 hospitalizations, we
employed a Poisson additive model under the framework of the DLNM. The DLNM is a flexible model and allows effects that
vary simultaneously both along the space of the predictor and in the lag dimension of its occurrence (Gasparrini et al., 2010).
The model uses cross-basis functions to transform the original explanatory variable to a set of basis variables, and then the
basis variables can be fitted into othermodels as a regular set of variables. The cross-basis functions consist of two sets of basis
functions. We used polynomial smooth functions with degree 2 to describe the associations betweenwastewater viral signals
and COVID-19 hospitalizations along the space of the predictor (wastewater viral signal) and in the lag dimension.We assume
that the time lag between infected individuals producing wastewater viral signals and the individuals being admitted to the
hospital is a random variable varying from 0 to 15 days. Therefore, we consider a lag range between 0 and 15 days in our
population level model. The intercept of the model is constructed as a function of time t with smooth functions. By testing
different smooth functions, we decided to use P-splines (Penalized splines) which produced the smallest Akaike information
criterion (AIC). P-splines were first proposed by Eilers and Marx (Eilers and Marx, 1996). We use a time varying intercept to
capture the monthly contributions of other factors not included in the model such as public health interventions, or prop-
erties of different variants of concern. Ideally, the effect of the intercept should not be strong, otherwise, this may indicate the
model is missing some important variables. In addition, the adjusted vaccination contribution to the COVID-19 hospitali-
zations described in Section 3.4.1 is included in themodel. Let Yt be the number of COVID-19 cases in hospital on day t; V*

t , the
simulated number of cumulative vaccine doses which are still effective against hospitalizations on day t described in Section
3.4.1. Our model can be written as:

logðEðYt jWt ;V*
t ÞÞ ¼ aþ f ðtÞ þ SðWt ; bÞ þ gV*

t ; (4)
Table 2
Simulation of vðkÞijs based on Table 2 in Ferdinands et al. (2022).

Dose Vaccine effectiveness Condition

Dose 1: vð1Þijs 0 s� i< T ð1Þ
ij

N(.58, .022) s� i � T ð1Þ
ij

Dose 2: vð2Þijs 0 s� i< T ð2Þ
ij

N(.73, .022) 60> s� i � T ð2Þ
ij

N(.61, .022) 120 > s � i � 60
N(.57, .022) 180 > s � i � 120
N(.48, .022) 240 > s � i � 180
N(.51, .022) 300 > s � i � 240
N(.55, .022) 360 > s � i � 300
N(.40, .022) 420 > s � i � 360

Dose 3: vð3Þijs 0 s� i< T ð3Þ
ij

N(89, 22) 60> s� i � T ð3Þ
ij

N(.86, .022) 120 > s � i � 60
N(.66, .022) 180 > s � i � 120
N(.41, .022) 240 > s � i � 180
N(.31, .022) 300 > s � i � 240
N(.32, .022) s � i � 300

Dose 4: vð4Þijs 0 s� j< T ð4Þ
ij

N(.75, .022) 60> s� j � T ð4Þ
ij

N(.54, .022) s � i � 60
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Fig. 3. The simulated vaccine effectiveness (VE) against COVID-19 hospitalizations under different waning assumptions. The x-axis represents the date of
vaccination for any dose with the y-axis being the value of V*

s defined in equation (3).
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Here g is an unknownparameter describing the linear association between V*
t and log(Yt); a is a fixed intercept, and f(t) is a

smooth function of time t, compressed to vary monthly, a þ f(t) can be considered as the time varying intercept which
summarizes the monthly contribution of other factors, e.g. population immunity from seroprevalence, government in-
terventions. This time varying intercept serves to control the information that are not explained by the wastewater viral
signals and VE;Wt is a vector of historical wastewater viral signals at time t, e.g., wastewater viral signals on day t, t� 1,…, t�
15; the term S(Wt; b) represents the transformed wastewater viral signals with the selected cross-basis functions, and the
vector b contains the corresponding unknown parameters that need to be estimated. The association between wastewater
viral signals and COVID-19 hospitalizations is represented as relative risk (RR), whichmeasures the ratio of the risk for COVID-
19 hospitalizations for the exposure group to the risks for the non-exposure group. Specifically, RR equal to 1 indicates that
there is no association between wastewater viral signals and COVID-19 hospitalizations; RR > 1 indicates a positive associ-
ation between wastewater viral signals and COVID-19 hospitalizations; RR < 1 indicates the negative association between
wastewater viral signals and COVID-19 hospitalizations. Various data visualizations are provided to summarize the associ-
ation between wastewater viral signal and COVID-19 hospitalizations. For comparison, we also fitted the distributed lag
model (DLM)

logðEðYt jWt ;V*
t ÞÞ ¼ aþ f ðtÞ þ

XD

d¼1

bdWd þ gV*
t ; (5)

The DLM considers the linear association between the wastewater viral signals and hospitalizations, the
PD

d¼1bdWd; d ¼ 1;…
;D is a linear combination of historical wastewater viral signals.

The arrival of the Omicron variant in November 2021, broughtwith it amore transmissible virus at a timewhen population
immunity was boosted by recent vaccination campaigns in Ottawa. Therefore, our model (4) was applied to the pre-Omicron
and Omicron periods separately to investigate how the association between the wastewater viral signal and COVID-19
hospitalization during the Omicron period (Nov 27th, 2021 to Nov 13th, 2022) changes compared to the pre-Omicron
period (Jun 16th, 2020 to Nov 26th, 2021). The analysis was carried out using R software (version 4.1.1) with packages
dlnm (version 2.4.7, Gasparrini, 2011) and mgcv (version 1.8e36, Wood, 2017).

4.3. Lag associations between wastewater viral signal and COVID-19 hospitalizations

We observed that the distributed lag nonlinear model using wastewater viral signal as a surrogate for exposure can
capture the true trend of COVID-19 hospitalizations with the adjusted R2 > 0.90 for the pre-Omicron period and R2 > 0.94 for
the Omicron period. The AIC values from the DLM (Table 4) are higher than the AIC values from the DLNM for all three
scenarios. The estimated g is negative for both the pre-Omicron period and the Omicron period in the DLNM (Table 3) under
all scenarios, while the p-values were significant for both the pre-Omicron period and the Omicron period. This shows that in
Table 3
Adjusted R2 and estimated g of the model under different scenarios using DLNM. The p-value < 0.05 rejects the null hypothesis H0: g ¼ 0.

Scenario Period Adjusted R2 AIC ĝ (p-value)

Scenario 1 Pre-Omicron .904 3623.4 �1.7 � 10�6(.00)
Omicron .944 2221.7 �6.0 � 10�7(.02)

Scenario 2 Pre-Omicron .905 3637.7 �2.0 � 10�6(.00)
Omicron .946 2223.9 �6.2 � 10�7(.00)

Scenario 3 Omicron .946 2221 �4.9 � 10�7(.03)
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Table 4
Adjusted R2 and estimated g of the model under different scenarios using DLM. The p-value < 0.05 rejects the null hypothesis H0: g ¼ 0.

Scenario Period Adjusted R2 AIC ĝ (p-value)

Scenario 1 Pre-Omicron .828 4126.8 �1.8 � 10�6(.00)
Omicron .917 2345 1.1 � 106(.00)

Scenario 2 Pre-Omicron .821 4171.6 �1.8 � 10�6(.00)
Omicron .915 2368 �1.1 � 10�7(.57)

Scenario 3 Omicron .914 2367 �2.3 � 10�7(.25)
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ourmodel, the number of vaccine doses contribute to a reduction in hospitalizations due to COVID-19. However, in our model,
a higher effect of population level vaccination is seen in the pre-Omicron period during which time the number of doses
increased the most. During the Omicron period, the change in the number of doses is comparatively flat. Our data does not
include individual level data on vaccination status of the hospitalized individuals. We can speculate that reasons for a
somewhat reduced effect in the model for the Omicron period are likely related to a combination of factors, including that the
number of doses changes very little during the Omicron period compared to the previous period when vaccination began.
Two time series plots of estimated COVID-19 hospitalizations and observed COVID-19 hospitalizations under scenario 3 are
provided in Fig. 4. Note that scenario 3 and scenario 2 have the same assumption for the pre-Omicron period.

To investigate how hospitalizations would change if the vaccination rate was different, we provide estimates for hospi-
talizations under two scenarios where doses are reduced by 10% and by 50%. To do this, we repeated the simulation in Section
4.1.3 under scenario 3 to obtain the V*

t in model (4). Fig. 5 shows the model predicted hospitalizations if vaccine doses are
reduced by 10% or 50%, while the wastewater level is unchanged. Under our simulation, COVID-19 hospitalizations would
increase dramatically the delta wave if vaccine uptake was reduced. During the Omicron period, the simulated reduction in
vaccine uptake results in an increase in hospitalizations, especially in January 2022, and then less so in the weeks following.
Recall that the changes in the number of doses in the Omicron period are relatively flat compared to the pre-Omicron period,
and the calculations for this simulation are based on maintaining the wastewater signals at the same level.

Fig. 6 shows the relative risk (RR) of COVID-19 hospitalizations over different levels of wastewater viral signals at time
lag ¼ 0, lag ¼ 5, lag ¼ 10, and time lag ¼ 15 for both the pre-Omicron period and the Omicron period. The upper/lower bound
of the 95% confidence interval is also plotted. The interpretation of the results is straightforward, e.g., during the pre-Omicron
period, if the wastewater viral signal is at level 0.0002 copies/copies PMMov on day (t � 15), then the expected COVID-19
hospitalizations on day t is about 1.05 (1.04e1.06) times higher than the baseline (wastewater viral signal ¼ 0) expected
COVID-19 hospitalizations on day t.

We observed that the RR of COVID-19 hospitalizations increases when wastewater viral signals are high, no matter the
value of the time lag. This illustrates that the wastewater viral signal can be used as a predictive marker signalling future
increases in COVID-19 hospitalizations. Another important observation is that the association between wastewater viral
signal and COVID-19 hospitalizations is not significant at a small time lag (lag ¼ 0) or at a large time lag (lag ¼ 15) during the
Omicron period (see Fig. 6, column 1 row 3 plot, and column 2, row 4 plot). Similarly, Fig. 6 shows the RR of COVID-19
hospitalizations over different lags at different wastewater viral signal levels (median, 95% percentile) for both the pre-
Omicron period and Omicron period. We observed that the association between wastewater viral signals and COVID-19
hospitalizations is different during the pre-Omicron period and the Omicron period. During the pre-Omicron period, the
RR is at the highest level when the lag is small, and it increases slightly when the time lag gets larger, beginning around lag of
10 days (Fig. 6). During the Omicron period, the RR is not significant at small time lags (i.e., < 1), but it increases to the highest
risk around a lag of 9 days, then decreases again. This may be explained by the timing of the vaccination campaign and the
Fig. 4. Model predicted COVID-19 hospitalizations and observed COVID-19 hospitalizations over time for pre-Omicron and Omicron periods. The model shown is
under scenario 3 of the vaccine effectiveness simulation.
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Fig. 5. Observed, and model predicted COVID-19 hospitalizations if the vaccine doses are reduced by 10% or 50%. The model shown is under scenario 3 of the
vaccine effectiveness simulation.

Fig. 6. Relative risk of COVID-19 hospitalizations at specific time-lag for pre-Omicron and Omicron period.
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third dose campaign. We saw our highest levels of wastewater signal during the Omicron BA.2 wave when 93% of the
population had protection from two doses, and a third dose campaign was underway. Thus, while there was a great deal of
virus present in the wastewater, protection from severe disease via vaccination kept hospitalizations low. We emphasize that
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Ottawa's wastewater viral signal rarely reached 0.002 copies/copies PMMov (doing so on 6 days only), so the confidence
interval for high wastewater viral signal levels is very wide.

In Fig. 7, we observed that RR for hospitalizations versus time lag appears to be a u-shaped curve during the pre-Omicron
period, and an n-shaped curve during the Omicron period. This suggests that the time lag between patients shedding virus
and a subsequent increase in hospitalizations was longer during the pre-Omicron period, and shorter during the Omicron
period. Possible explanations for the shorter time lag between an increase in viral signal and a subsequent increase in the RR
of hospitalization during the Omicron period include the presence of a more transmissible variant capable of immune escape
in a population that had largely been protected by public health interventions. This is also discussed in D'Aoust et al. (2022),
who note the shorter incubation period with the Omicron BA.1 variant. The 3D plot of the nonlinear lagged association
between wastewater viral signals and COVID-19 hospitalizations are also provided (Fig. 8). They illustrate that the lagged
association between wastewater viral signal and hospitalizations has evolved over time. In comparing the pre- and post-
Omicron time periods, we see that the time lag for hospitalization has been shortened in the Omicron era.

In the supplementary section, we provided further results from our analysis. Figure A.9 shows the estimated time-varying
intercept of time âþ f̂ ðtÞ of Model (4). Ideally, âþ f̂ ðtÞ should equal zero which means that the wastewater viral signals and
VE fully interpret the Covid-19 hospitalizations. However, the results suggest that there are unexplained features, excluding
vaccination and wastewater viral signals. During the pre-Omicron period, f̂ ðtÞ continues to increase, and this might be caused
by variables not in the model such as properties of variants of concern, for example, those infected by the Delta variant had a
Fig. 7. Relative risk of COVID-19 hospitalizations at specific wastewater viral signals level for pre-Omicron and Omicron period.

Fig. 8. 3D plot of nonlinear-lagged association between wastewater viral signals and relative risk of COVID-19 hospitalizations for pre-Omicron period(left side),
and Omicron period(right side).
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higher probability of being hospitalized (Alexandar et al., 2021). Changes to public health policy such as use of masks or
closing and re-opening of schools is another feature not accounted for in themodel that might affect f̂ ðtÞ. During the Omicron
period, âþ f̂ ðtÞ started at a high level then reduced as Omicron infected people were less likely to be hospitalized (Nyberg
et al., 2022). Figure A.10 shows the 3D plot of the nonlinear lagged association between wastewater viral signals and
COVID-19 hospitalizations using Model (5). Clearly, the results using Model (4) are more interpretable, although similar
features can be observed in Figure A.10 and Fig. 8. We repeated our analysis considering daily hospital admissions as the
response variable, instead of the number of patients currently in hospital. The results are shown in Figure A.11 to Figure A.13,
and Table A.5. In general, using hospital admissions results in similar conclusions, with less time lag. We decided to use
currently in the hospital since the viral signal at day t is also a type of cumulative viral signal in days (not only from that day),
with all the infected people including those in the hospital contributing, rather than only newly infected people on the first
day of infection. Therefore, we believe the data describing current active hospitalizations as a response variable appropriately
matches with measured viral signals in the model.

5. Discussion

5.1. Value of the approach

In this paper, we adapted the rolling correlation method to calculate the optimized Spearman's correlations between
wastewater viral signals and COVID-19 hospitalizations. We also provide a simple statistic to investigate how the time-lag
between them varies over time. This procedure can also be applied to other data that includes two or more factors that
change together, not necessarily at a consistent rate.

In this paper, we studied the relationship between the viral signal of SARS-CoV-2 in Ottawa wastewater versus cases
currently in hospital (all hospitalizations including ICU cases). The distributed lag nonlinear model we used accounts for the
fact that patients may present to hospital at different times after ‘exposure’ and that this occurs over a lagged period, i.e., the
effect on each individual is different. The distributed lag model fits well with the delayed effect that occurs after exposure to a
respiratory pathogen such as SARS-CoV-2, and it is interesting to try to quantify the shape of this lag in the face of changing
population immunity and public health interventions. In order to account for the limited data available about individual levels
of immune protection, our model also incorporated a method to simulate vaccine effectiveness under different waning as-
sumptions, using estimates from studies of vaccine effectiveness over time.

5.2. Limitations of the data and model

Over the period analyzed here, from March 2020 to November 2022, it may be the case that criteria for admission to
hospital changed, with patients more readily admitted to hospital at times when resource use was low. Or, once specific risks
weremore clearly understood and articulated, those patients whomet the criteria of high risk (such as older age groups) were
more readily admitted to hospital. There were also changes in health care resource use that may have been driven by pop-
ulation immunity or by variant type, where early in the pandemic we saw a strain on ICU resources, whereas with Omicron
and subsequent waves there were fewer admitted to ICU compared to the regular ward.

As mentioned earlier, during the period under analysis, there was a significant change in population immunity, from
vaccination campaigns to immunity gained from infection, or both. In addition, during this time period, the province of
Ontario went from an initially very high level of protective measures, while transmission was relatively low, to very high
levels of transmission under the Omicron era, with progressive lifting of protections to the point where the only remaining
protection continues to be masking in health care settings, and masking by personal choice. As we have seen, the scale of
these changes in population immunity and non-pharmaceutical interventions have had an impact on the relationship be-
tween wastewater signal and hospitalizations. Moving forward, it will be important to carry out analyses that consider the
changing levels of population immunity and the implementation of public health interventions, taking into account per-
centage uptake in new vaccination campaigns. We considered adding seroprevalence data over time from the COVID Im-
munity Task Force as a covariate, however, this data was available only at the provincial level and is highly correlated with
time. Since our time varying intercept, f(t), in our DLNMmodel explains information that is not included in themodel directly,
we are able to draw conclusions on wastewater viral signals without seroprevalence data.

5.3. Future investigation

We are currently working on applying the distributed lag model to a larger spatial area, however many important aspects
must be considered. Care must be takenwhen combining data from laboratories that use different methods for collection and
analysis. Also, the wastewater treatment plant for the Ottawa region covers a very high percentage of the population (96.1%
according to https://613covid.ca/model/#wastewater). Very few public health units in Ontario have this level of coverage, so
models will need to be adjusted to account for hospitalizations in the portion of the population not covered by thewastewater
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sewershed. This population may be different in ways that affect hospitalization, e.g., they may live in a more rural area, with
lower population density and fewer opportunities for transmission.

Referring back to Fig. 8 in Section 4, we can see the evolving landscape that surrounds estimate of future health care
resource needs. This landscape changes over time with multiple factors influencing outcomes, including the level of popu-
lation immunity and the properties of the dominant variant. Wastewater monitoring for SARS-CoV-2 and other pathogens as
an indicator for health resource use is improved by including an estimation of changing levels of population immunity. More
detailed vaccination data as well as seroprevlence estimates at a fine spatial level, such as from blood donor surveillance,
would improve estimation of future health care resource utilization. Moving forward, continued assessment of vaccine
protection against hospitalization is an important element to incorporate into health care resource utilization models.
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Appendix A. Extra figures & tables

Fig. A.9. âþ f̂ ðtÞ of model (4) for pre-Omicron period (left side), and Omicron period (right side).

Fig. A.10. 3D plot of nonlinear-lagged association between wastewater viral signals and relative risk of COVID-19 hospitalizations for pre-Omicron period(left
side), and Omicron period(right side), using distributed linear lag model.
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Fig. A.11. The optimized correlation over time (upper plot), the optimized t1 þ optimized t2 over time (middle plot), and optimized t1, t2 over time. Smoothed
using cubic smoothing spline. Using daily hospital admission as response.

Fig. A.12. Model predicted COVID-19 hospitalizations and observed COVID-19 hospitalizations over time for pre-Omicron and Omicron periods. The model shown
is under scenario 3 of the vaccine effectiveness simulation. Using daily hospital admission as response.

Fig. A.13. 3D plot of nonlinear-lagged association between wastewater viral signals and relative risk of COVID-19 hospitalizations for pre-Omicron period(left
side), and Omicron period(right side), using daily hospital admission as response.
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Table A.5
Adjusted R2 and estimated g of the model under different scenarios using DLNM. The p-value < 0.05 rejects the null hypothesis H0: g ¼ 0. Using admitted
number

2
Scenario
 Period
 Adjusted R
630
AIC
 ĝ (p-value)
Scenario 1
 Pre-Omicron
 .721
 1815.1
 �9.1 � 10�7(.08)

Omicron
 .645
 1496.9
 �3.3 � 10�7(.66)
Scenario 2
 Pre-Omicron
 .723
 1815.2
 �1.1 � 10�6(.09)

Omicron
 .661
 1486.7
 �2.2 � 10�6(.00)
Scenario 3
 Omicron
 .661
 1486.9
 �2.0 � 10�6(.00)
References

Alexandar, S., Ravisankar, M., Kumar, R. S., & Jakkan, K. (2021). A comprehensive review on Covid-19 Delta variant. International Journal of Pharmaceutical
Chemistry Research, 5, 7.

Anand, U., Adelodun, B., Pivato, A., Suresh, S., Indari, O., Jakhmola, S., Jha, H. C., Jha, P. K., Tripathi, V., & Di Maria, F. (2021). A review of the presence of SARS-
CoV-2 RNA in wastewater and airborne particulates and its use for virus spreading surveillance. Environmental Research, 196, Article 110929.

Andrews, N., Stowe, J., Kirsebom, F., Toffa, S., Rickeard, T., Gallagher, E., Gower, C., Kall, M., Groves, N., O'Connell, A. M., et al. (2022). Covid-19 vaccine
effectiveness against the Omicron (B. 1.1. 529) variant. New England Journal of Medicine, 386, 1532e1546.

Arabzadeh, R., Grünbacher, D. M., Insam, H., Kreuzinger, N., Markt, R., & Rauch, W. (2021). Data filtering methods for SARS-CoV-2 wastewater surveillance.
Water Science and Technology, 84, 1324e1339.

Asghar, H., Diop, O. M., Weldegebriel, G., Malik, F., Shetty, S., El Bassioni, L., Akande, A. O., Al Maamoun, E., Zaidi, S., Adeniji, A. J., et al. (2014). Environmental
surveillance for polioviruses in the global Polio eradication initiative. The Journal of Infectious Diseases, 210, S294eS303.

Dai, X., Champredon, D., Fazil, A., Mangat, C. S., Peterson, S. W., Mejia, E. M., Lu, X., & Chekouo, T. (2022). Statistical framework to support the epidemi-
ological interpretation of SARS-CoV-2 concentration in municipal wastewater. Scientific Reports, 12, 1e10.

D'Aoust, P. M., Graber, T. E., Mercier, E., Montpetit, D., Alexandrov, I., Neault, N., Baig, A. T., Mayne, J., Zhang, X., Alain, T., et al. (2021a). Catching a resurgence:
Increase in SARS-CoV-2 viral RNA identified in wastewater 48 h before COVID-19 clinical tests and 96 h before hospitalizations. Science of The Total
Environment, 770, Article 145319.

D'Aoust, P. M., Mercier, E., Montpetit, D., Jia, J. J., Alexandrov, I., Neault, N., Baig, A. T., Mayne, J., Zhang, X., Alain, T., et al. (2021b). Quantitative analysis of
SARS-CoV-2 RNA from wastewater solids in communities with low COVID-19 incidence and prevalence. Water Research, 188, Article 116560.

D'Aoust, P. M., Tian, X., Towhid, S. T., Xiao, A., Mercier, E., Hegazy, N., Jia, J. J., Wan, S., Kabir, M. P., Fang, W., et al. (2022). Wastewater to clinical case (WC)
ratio of COVID-19 identifies insufficient clinical testing, onset of new variants of concern and population immunity in urban communities. Science of The
Total Environment, 853, Article 158547.

Eilers, P. H., & Marx, B. D. (1996). Flexible smoothing with B-splines and penalties. Statistical Science, 11, 89e121.
Entezari, A., & Mayvaneh, F. (2019). Applying the distributed lag non-linear model (DLNM) in epidemiology: Temperature and mortality in Mashhad. Iranian

Journal of Public Health, 48, 2108.
Feng, L., Zhang, W., & Li, X. (2018). Monitoring of regional drug abuse through wastewater-based epidemiologyda critical review. Science China Earth

Sciences, 61, 239e255.
Ferdinands, J. M., Rao, S., Dixon, B. E., Mitchell, P. K., DeSilva, M. B., Irving, S. A., Lewis, N., Natarajan, K., Stenehjem, E., Grannis, S. J., et al. (2022). Waning of

vaccine effectiveness against moderate and severe covid-19 among adults in the US from the VISION network: Test negative, case-control study (p. 379). bmj.
Galani, A., Aalizadeh, R., Kostakis, M., Markou, A., Alygizakis, N., Lytras, T., Adamopoulos, P. G., Peccia, J., Thompson, D. C., Kontou, A., et al. (2022). SARS-CoV-

2 wastewater surveillance data can predict hospitalizations and ICU admissions. Science of The Total Environment, 804, Article 150151.
Gasparrini, A., Armstrong, B., & Kenward, M. G. (2010). Distributed lag non-linear models. Statistics in Medicine, 29, 2224e2234.
Guo, W., Yi, L., Wang, P., Wang, B., & Li, M. (2021). The effect of air temperature on hospital admission of adults with community acquired pneumonia in

Baotou, China. Scientific Reports, 11, 1e7.
Hegazy, N., Cowan, A., D'Aoust, P. M., Mercier, E., Towhid, S. T., Jia, J. J., Wan, S., Zhang, Z., Kabir, M. P., Fang, W., et al. (2022). Understanding the dynamic

relation between wastewater SARS-CoV-2 signal and clinical metrics throughout the pandemic. medRxiv.
Judge, G. G. (1982). Introduction to the theory and practice of econometrics.
Kaplan, E. H., Wang, D., Wang, M., Malik, A. A., Zulli, A., & Peccia, J. (2021). Aligning SARS-CoV-2 indicators via an epidemic model: Application to hospital

admissions and RNA detection in sewage sludge. Health Care Management Science, 24, 320e329.
Larsen, D. A., & Wigginton, K. R. (2020). Tracking COVID-19 with wastewater. Nature Biotechnology, 38, 1151e1153.
Larson, P. S., Espira, L., Glenn, B. E., Larson, M. C., Crowe, C. S., Jang, S., & O'Neill, M. S. (2022). Long-term PM2. 5 exposure is associated with symptoms of

acute respiratory infections among children under five years of age in Kenya, 2014. International Journal of Environmental Research and Public Health, 19,
2525.

Medema, G., Heijnen, L., Elsinga, G., Italiaander, R., & Brouwer, A. (2020). Presence of SARS-Coronavirus-2 RNA in sewage and correlation with reported
COVID-19 prevalence in the early stage of the epidemic in The Netherlands. Environmental Science and Technology Letters, 7, 511e516.

Nyberg, T., Ferguson, N. M., Nash, S. G., Webster, H. H., Flaxman, S., Andrews, N., Hinsley, W., Bernal, J. L., Kall, M., Bhatt, S., et al. (2022). Comparative analysis
of the risks of hospitalisation and death associated with SARS-CoV-2 omicron (B. 1.1. 529) and delta (B. 1.617. 2) variants in england: A cohort study. The
Lancet, 399, 1303e1312.

Peccia, J., Zulli, A., Brackney, D. E., Grubaugh, N. D., Kaplan, E. H., Casanovas-Massana, A., Ko, A. I., Malik, A. A., Wang, D., Wang, M., et al. (2020). Mea-
surement of SARS-CoV-2 RNA in wastewater tracks community infection dynamics. Nature Biotechnology, 38, 1164e1167.

Pedder, H., Kapwata, T., Howard, G., Naidoo, R. N., Kunene, Z., Morris, R. W., Mathee, A., & Wright, C. Y. (2021). Lagged association between climate variables
and hospital admissions for pneumonia in South Africa. International Journal of Environmental Research and Public Health, 18, 6191.

Pope, C. A., III, & Schwartz, J. (1996). Time series for the analysis of pulmonary health data. American Journal of Respiratory and Critical Care Medicine, 154,
S229.

Randazzo, W., Truchado, P., Cuevas-Ferrando, E., Sim�on, P., Allende, A., & S�anchez, G. (2020). SARS-CoV-2 RNA in wastewater anticipated COVID-19
occurrence in a low prevalence area. Water Research, 181, Article 115942.

Rousis, N. I., Gracia-Lor, E., Zuccato, E., Bade, R., Baz-Lomba, J. A., Castrignan�o, E., Causanilles, A., Covaci, A., de Voogt, P., Hern�andez, F., et al. (2017).
Wastewater-based epidemiology to assess pan-European pesticide exposure. Water Research, 121, 270e279.

Schoen, M. E., Wolfe, M. K., Li, L., Duong, D., White, B. J., Hughes, B., & Boehm, A. B. (2022). SARS-CoV-2 RNAwastewater settled solids surveillance frequency
and impact on predicted COVID-19 incidence using a distributed lag model. ACS ES&T Water, 2(11), 2167e2174.

Ssentongo, P., Ssentongo, A. E., Voleti, N., Groff, D., Sun, A., Ba, D. M., Nunez, J., Parent, L. J., Chinchilli, V. M., & Paules, C. I. (2022). SARS-CoV-2 vaccine
effectiveness against infection, symptomatic and severe COVID-19: A systematic review and meta-analysis. BMC Infectious Diseases, 22, 1e12.

http://refhub.elsevier.com/S2468-0427(23)00041-6/sref1
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref1
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref2
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref2
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref3
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref3
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref3
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref4
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref4
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref4
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref5
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref5
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref5
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref6
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref6
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref6
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref7
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref7
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref7
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref8
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref8
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref9
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref9
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref9
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref10
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref10
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref11
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref11
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref12
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref12
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref12
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref12
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref13
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref13
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref14
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref14
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref15
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref15
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref16
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref16
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref16
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref17
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref17
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref18
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref19
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref19
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref19
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref20
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref20
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref21
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref21
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref21
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref22
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref22
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref22
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref23
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref23
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref23
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref23
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref24
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref24
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref24
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref25
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref25
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref26
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref26
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref27
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref27
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref27
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref27
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref28
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref28
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref28
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref28
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref28
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref29
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref29
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref29
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref29
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref30
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref30
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref30


K.K. Peng, E.M. Renouf, C.B. Dean et al. Infectious Disease Modelling 8 (2023) 617e631
Thompson, M. G. (2022). Effectiveness of a third dose of mRNA vaccines against COVID-19eassociated emergency department and urgent care encounters and
hospitalizations among adults during periods of Delta and Omicron variant predominancedVISION Network, 10 States, August 2021eJanuary 2022. MMWR.
Morbidity and Mortality Weekly Report 71.

Xie, Y., Challis, J. K., Oloye, F. F., Asadi, M., Cantin, J., Brinkmann, M., McPhedran, K. N., Hogan, N., Sadowski, M., Jones, P. D., et al. (2022). RNA in municipal
wastewater reveals magnitudes of COVID-19 outbreaks across four waves driven by SARS-CoV-2 variants of concern. ACS ES&T Water.

Zuccato, E., Chiabrando, C., Castiglioni, S., Bagnati, R., & Fanelli, R. (2008). Estimating community drug abuse by wastewater analysis. Environmental Health
Perspectives, 116, 1027e1032.

Zuccato, E., Chiabrando, C., Castiglioni, S., Calamari, D., Bagnati, R., Schiarea, S., & Fanelli, R. (2005). Cocaine in surface waters: A new evidence-based tool to
monitor community drug abuse. Environmental Health, 4, 1e7.

Zulli, A., Pan, A., Bart, S. M., Crawford, F. W., Kaplan, E. H., Cartter, M., Ko, A. I., Sanchez, M., Brown, C., Cozens, D., et al. (2022). Predicting daily COVID-19 case
rates from SARS-CoV-2 RNA concentrations across a diversity of wastewater catchments. FEMS microbes, 2.
631

http://refhub.elsevier.com/S2468-0427(23)00041-6/sref31
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref31
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref31
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref31
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref31
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref31
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref32
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref32
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref32
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref33
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref33
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref33
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref34
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref34
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref34
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref35
http://refhub.elsevier.com/S2468-0427(23)00041-6/sref35

	An exploration of the relationship between wastewater viral signals and COVID-19 hospitalizations in Ottawa, Canada
	1. Introduction
	2. Data sources and descriptions
	2.1. Wastewater surveillance data
	2.2. COVID-19 hospitalization data
	2.3. Vaccination information

	3. Correlation analysis
	3.1. Motivation
	3.2. Method
	3.3. Results

	4. Nonlinear model with random lag
	4.1. Vaccination information
	4.1.1. Scenario 1
	4.1.2. Scenario 2
	4.1.3. Scenario 3

	4.2. Distributed lag nonlinear model
	4.3. Lag associations between wastewater viral signal and COVID-19 hospitalizations

	5. Discussion
	5.1. Value of the approach
	5.2. Limitations of the data and model
	5.3. Future investigation

	Declaration of competing interest
	Acknowledgement
	Appendix A. Extra figures & tables
	References


