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Abstract
Administrative health records provide a rich source of information pertaining to 
various exposures, many of which are time-varying in nature. When internal time-
varying covariates are included in a Cox regression model, likelihood-based infer-
ence procedures are no longer applicable to infer model parameters (Kalbfleisch and 
Prentice in The Statistical analysis of failure time data, Wiley, New York, 2002). 
Motivated by the ongoing opioid epidemic, we summarize an individual’s opioid 
agonist treatment (OAT) dispensation history and additional exposures with (i) a 
model-based summary, or (ii) its functional principal component scores. We show 
that the OAT dispensation proportion has a non-linear effect on the mortality haz-
ard over time, and a significant interaction with time of birth. Particularly a clear 
protective effect against mortality for Millennials and Generation Z is revealed. Our 
approach is easy to implement by virtually any statistical software, and provides a 
risk assessment tool for utilizing available health records.
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1  Introduction

Administrative databases have become an increasingly popular data source to 
conduct population-based health research due to the availability of a vast collec-
tion of longitudinal clinical factors. The collected information allows researchers 
to investigate the association between time-varying exposures and some clinically 
meaningful event times, such as an individual’s mortality time [1, 2, 7] Clinicians 
can use, for example, survival predictions to assess courses of treatments to meet 
their patient’s specific needs.

The problem is that an individual with a health record on a particular date 
implies their survival (up to that date), which means that time-varying exposures 
are examples of internal time-varying covariates (cf. [13]). The challenge brought 
upon internal time-varying covariates is that the conventional relationship 
between the hazard and survivor functions no longer exists, which makes survival 
prediction problematic. However, given the vast information available in admin-
istrative databases, there is a need for survival prediction that utilizes these lon-
gitudinal factors [29, 31]. The conventional approach is to replace internal time-
varying covariates with a summary of its observed history, and include them as 
covariates in a Cox regression model. For example, researchers have summarized 
an individual’s observed ICD-9/10 codes (over time) to produce comorbidity 
scores (cfs. [16, 22, 23, 26]). Another approach is to replace the original covari-
ate process with simpler processes, such as time-varying indicator variables (cf. 
[29]). Depending on the application however, using condensed histories of the 
exposure history can obscure the relationship between the exposure process and 
the event time of interest.

Motivated by the ongoing opioid epidemic, our aim is to predict survival prob-
abilities given an individual’s dispensation history of opioid agonist treatment 
(OAT), a prescribed treatment for opioid use disorders. Administrative health 
records between 01/01/1996 to 10/01/2018 in British Columbia, Canada in the 
form of drug dispensations [5], hospital and emergency department admissions 
[3], physician billing records [4], incarceration records [15], and deaths [6] were 
provided for individuals identified with an opioid use disorder with the objective 
to improve overall quality of care [18]. These health records not only provides us 
a real-world setting to generate scientific evidence on the clinical management of 
an opioid use disorder, but allow us to observe many time-varying exposures,a 
limitation with other prior studies [21].

Individuals were classified to be dispensed OAT or not dispensed OAT based 
on pharmaceutical records. In total there are 54,739 adults with at least one OAT 
dispensation record, in which the average OAT dispensation proportion across 
individuals is 58.37%. This highlights an individual’s dispensation indicator to 
be a dynamic process, and a summary that utilizes the entire observed dispensa-
tion history is warranted. We use an individual’s “overall OAT dispensation pro-
portion” to summarize the entire dispensation process. In principle, this quan-
tity is easy to compute, and can be included as a covariate in a Cox regression 
model. This variable however is generally unknown since complete dispensation 
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histories are unavailable due to data limitations. Such examples include the event 
time being subject to right-censoring, or data availability restricted to specific 
dates. To overcome this problem, we estimate it with the available data, and use 
it in place of the unknown quantity. However, using only the OAT dispensation 
proportion to summarize the entire covariate process may not adequately cap-
ture all relevant characteristics in terms of its effect on an individual’s mortality 
hazard. Similar to [25], we apply functional principal component (FPC) analysis 
to the original exposure process in order to perform a dimensionality reduction, 
and summarize its history information with FPC scores (FPCSs). This approach 
allows the covariate process to self-identify relevant features from its history, 
without the need to explicitly specify a model. To the best of our knowledge, 
these summaries pertaining to OAT are not present within the literature, and 
would provide a new tool to assess the OAT effect on mortality. An added benefit 
of the proposed modeling is its ease to implement in statistical software, due to 
the development of an R package to obtain FPCSs with an alternating binary pro-
cess [33].

The rest of the article is organized as follows. Sections 2 and 3 provides the Cox 
regression model and summaries of internal covariate processes, respectively. We 
apply the proposed modeling to the administrative database that motivated this 
research, and interpret our findings in Sect. 4. Finally, Sect. 5 provides some con-
cluding remarks, and motivate the need for future investigation.

2 � Notation and Modeling

Let T denote an individual’s survival time (measured in days) since their first 
recorded OAT dispensation record. Suppose observations on T are subject to right-
censoring with the censoring time, C. The available information on T is (T*, ∆), 
where T* = T ∧C is the minimum between T and C, and ∆ = I(T ≤ C). Let Z(t) ∈ 
{0, 1} denote an individual’s OAT dispensation indicator at time t ≥ 0, which is 
obtained from daily pharmaceutical dispensation records, and ZH(t) = {Z(u) : 0 ≤ 
u ≤ t}. We additionally let X(t) = (X1(t), …, Xq(t))′ denote external time-varying 
covariates and time-independent characteristics of an individual, and XH(t) = {X(u) : 
0 ≤ u ≤ t}. Here, the covariate Xk(t) is time-independent if Xk(0) ≡ Xk(t), for all t > 0, 
and k = 1, …, q. Our statistical goal is to estimate the conditional hazard function of 
T (at time t), given the processes ZH(t) and XH(t):

If a secondary objective is to obtain survival predictions based on a model for 
(2), we cannot directly use ZH(t) in our modeling, as this would obstruct the conven-
tional relationship between the hazard and survivor functions. This relationship can 
be preserved if we can summarize an individual’s entire history ZH(∞) ≡ ZH(T). Let 
ν denote a summary of ZH(∞); we discuss how to obtain such a summary in Sect. 3. 
The key assumption is for ν to adequately summarize Z(∞), in the sense that T and 

(1)𝜆
(
t; ZH(t), XH(t)

)
= lim

dt→O+

1

dt
P(t ≤ T < t + Δt|T ≥ t, Z(t), X(t)).
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ZH(·) are conditionally independent given ν. We then model the relationship between 
(ZH(·), XH(·)) and T by specifying the following Cox regression model with time-
varying effects:

Here, λ0(t) is an arbitrary baseline hazard function, θ = (θ1, · · · , θq)′, and γ(t) is 
an unknown function of time. One may approximate γ(·) with a linear combination 
of natural cubic spline basis functions with percentile-based knots [9],

Here, s determines the number of interior knots in the spline. We use standard 
model selection criteria such as Akaike information criterion (AIC) or Bayesian 
information criterion (BIC) values to select an appropriate values for s [20].

With ν known, and assuming that the study collects n independent and identically 
distributed realizations of {(Ti

*, ∆i, νi, XH
i (Ti

*)): i = 1, · · ·, n}, we estimate param-
eters θ and γ(t) by maximizing its partial likelihood function, and estimate Λ (t) = 
∫ t

0
�0(s)ds with the well-known Breslow estimator [14]. This allows us to estimate 

the survivor function with

In practice however, we do not necessarily observe ZH(∞), due to for instance, 
observing Z(·) only at times that align with a data extraction window. This renders ν 
to be unknown, and thus we cannot directly fit the model in (2). Viewing records of 
an internal covariate as longitudinal measures of an exposure process, the standard 
approach is to specify a model for the longitudinal outcomes that involves ν, and 
conduct so-called “joint modelling” with (2) [28]. This approach entails specifying 
the distribution of ν, and evaluating the likelihood function entails integrating over 
the distribution of ν. Prior research has shown the resulting estimator under to be 
fairly robust against misspecifying ν to follow a normal distribution (e.g. [10, 24, 
27]), while attempts to reduce the computational costs with joint modeling (e.g. [8]) 
cannot avoid the integrating over the distribution of ν. This result makes implement-
ing joint models a challenge, especially whenever the dimension of ν is large. This 
motivates us to consider an alternative approach, where we use the available data, 
ZH(T*), to obtain our “best guess” for ν, say νˆ. We outline two alternative proce-
dures to obtain νˆ.

Remark  Due to the dispensation records only capturing records within British 
Columbia during the data extraction window, the date of the first recorded OAT dis-
pensation may not necessarily correspond to an individual’s actual first OAT dis-
pensation. In other words, the time t = 0 may not be meaningful for some individu-
als. We can overcome this issue by alternatively considering age as the timescale in 
(2), which transforms t to a(t) = t + a0, where a0 is an individual’s age (in days) on 

(2)�
(
t;ZH(t),XH(t)

)
= �0(t) exp{�(t)� + �

�
X(t)}.

�(t) ≈

s∑

k=0

�kCk(t).

Ŝ
(
t; ZH

i
(t), XH

i i(t)
)

= exp {− ∫
t

0

exp
{

⌢

𝛾(t)𝜈i + �X
H
i
(t)
}
dΛ̂0(u)
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their first recorded OAT dispensation date. We consider both timescales within our 
data analysis in Sect. 4.

3 � Summarizing Internal Covariates

We present two dimension reduction strategies for an individual’s exposure history. 
The first approach summarizes the exposure history with a model-based estimate, 
and the second approach is to use the resulting FPCSs from the observed exposure 
history.

3.1 � Average Dispensation Proportion

Let Ri(t) = ∫ t

0
Zi(u)du∕t denote the proportion of time individual i is dispensed OAT 

over [0, t] for i = 1, · · ·, n. In practice, one may choose to use {Ri(tij): j = 1, · · ·, mi}, 
where 0 ≤ ti,mi ≤ Ti* in their analysis. Using the simplified notation Rij = Ri(tij), we 
specify the following model for the OAT dispensation history of individual i:

for j = 1, · · ·, mi and i = 1, · · ·, n, where h(·) is some pre-specified function, νi is a 
subject-specific (unknown) quantity that summarizes individual i’s OAT dispensa-
tion history, and εij is a mean-zero term that captures the deviation between νi and 
the transformed measurements h(Rij). We view νi as an unknown parameter in (3), 
with E{h(Rij)} = νi for all j. This naturally leads us to adopt νˆi = 

∑mi

j=1
h(Rij)∕mi as an 

unbiased estimator for νi, regardless of the correlation between the εij’s.
Although the model in (3) explicitly assumes that an individual’s OAT dispensa-

tion proportion is constant with respect to time, this assumption can be relaxed by, 
for instance, replacing νi with linear combinations of natural cubic spline basis func-
tions [30]. Although simplistic, the current specification of (3) allows us to interpret 
νˆi as the (observed) average of transformed proportions individual i was dispensed 
OAT during their follow-up time. Furthermore, obtaining νˆi is computationally sim-
ple, and it avoids the heavy computational costs present in joint modeling.

In order for νˆi to serve as an adequate summary of νi however, we require (3) 
to be correctly specified, and mi to be sufficiently large for each i. As an alterna-
tive approach, we adopt FPCSs to summarize the (observed) history of the covariate 
process. This approach avoids any model specification and pools all of the available 
information together, so it can therefore serve as an alternative method to a model-
based summary.

3.2 � Functional Principal Component Scores

A drawback with specifying a model to summarize the history of a time-varying 
exposure, as in Section 3.1, is that we may omit important features of the covariate 
process. This can happen if the model (3) is misspecified. This motivates us to view 

(3)h
(
Rij

)
= �i + �ij,
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the summary of the process as infinite-dimensional, and let the data identify impor-
tant features of the process by conducting a dimension reduction procedure. As an 
individual’s dispensation status over time can be viewed as a realization of a func-
tional binary process, we applied sparse logistic FPC analysis for binary data [33], 
and use the FPCSs that explains a sufficient amount of variance (e.g. 95%) within 
the process, as summaries. The disadvantage of using principal scores as summaries 
lies with its interpretation, as it can be difficult to interpret the important features 
that are being summarized. In terms of its use in practice, Zhong and Zhang (2022) 
developed the R package SLFPCA to obtain FPCSs for alternating binary processes.

4 � Analysis of the OAT Dataset

With the provincial administrative database, we fit the model in (2) to summarize 
the internal covariates. By using the method described in Section  3.1, we speci-
fied h(x) = x, so that the effect of interest pertains to the average OAT dispensa-
tion proportion. Additional risk factors we included in our analysis was based on 
a preliminary analysis conducted by [18]. Time-independent covariates include sex 
(male vs. female), birth generation (indicators for birth year: 1901-1945 vs. 1946-
1964 vs. 1965-1980 vs. 1981+), health authority (indicators of residence region: 
Fraser Health vs. Interior vs. Vancouver Coastal vs. Vancouver Island vs. Northern), 
and year category (category corresponding to first recorded OAT dispensation date: 
1996–2000 vs. 2001–2006 vs. 2007–2012 vs. 2013–2018). Although the variable 
health authority is in principle a time-varying covariate, the data showed this varia-
ble to be rather stable, and is therefore treated as a time-independent variable. There 
were also few changes in sex over time, many of which were attributed to data entry 
errors.

To summarize time-varying exposure processes, we started with one-jump binary 
processes to indicate if an individual satisfied a condition by time t. Since observ-
ing a particular value from these indicators does not inform us of an individual’s 
survival status (except at the one time point where the indicator changes its value), 
we can loosely regard these indicators as external time-varying covariates. The time-
varying covariates we consider are alcohol or other substance use disorders (by 
time t), mental illness or chronic pain (by time t), HCV or HIV/AIDS (hepatitis C 
virus or human immunodeficiency virus or acquired immunodeficiency syndrome 
by time t), indicator of ever receiving a sedative, (use of a sedative by time t), and 
ever on PharmaCare Plans C or G (indicator of poor socio-economic status by time 
t). The reason why we merged comorbidities with the term “or ” in their names was 
to address the serial correlation induced when we initially treated all of the pro-
cesses separately. Finally, the two internal covariates we proceed to summarize are 
OAT dispensation indicator, and incarceration status. The effect pertaining to OAT 
dispensation indicator is the effect of primary interest.

Table 1 presents the estimates of γ(t) ≡ γ and θ under (2), where the time scale is 
time since first recorded OAT dispensation and we used the average proportion and 
FPCSs as summaries for the OAT and incarceration histories. To conduct dimension 
reduction with the OAT process, we settled with the first two FPCSs, as 96.0% of 
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the overall variability is captured based on the estimated eigenvalues. In terms of 
incarceration status, we only include the first FPCS score as it explains 94.1% of the 
overall variability. In general, the signs of the estimates align with our expectation 
from descriptive statistics, with the nonconforming effects being Mental Illness or 
Chronic Pain, and Ever on PharmaCare Plans C or G. A possible reason for this 
can be due to these effects being correlated with the other time-varying indicator 
variables in the model. Illustrating the observed mean of these exposures over time 
[11] in Fig. 1 supports this hypothesis, and warrants the need of a more sophisticated 
summary beyond a one-jump binary as a topic for future investigation. Figure 1 also 
reveals that (i) non-survivors are generally more likely to receive exposures rela-
tive to survivors, and (ii) the pattern of exposures varies over time; a motivation for 
specifying a time-varying parameter in (2).

With regards to the effects of interest, we see that the effect of both average OAT 
dispensation proportion and average incarcerated proportion (an analogous sum-
mary of incarceration status from Sect. 3.1) are positive and statistically significant. 
We attribute the positive effect for average incarcerated proportion to nearly all 
non-survivors surviving during their incarceration, whereas the average OAT dis-
pensation proportion result was surprising; we will further investigate this result 
later. However, as approximately 73.5% of individuals were never incarcerated, one 
may question the effectiveness of the average incarcerated proportion adequately 
summarizing the incarceration process, which motivated us to consider FPCSs. We 
examined the distribution of the FPCS for incarceration status in Table 2, in which 
the FPCSs appear to be uncorrelated with the average incarcerated proportion. 
Note that the functional principal component scores for the OAT dispensation sta-
tus appear to be correlated with the average OAT dispensation proportion, and the 
results are similar between Model II and Model IV in Table 1. This led us to proceed 
with the covariate specification of Model II.
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Fig. 1   Moving Average (30-days) of the observed mean over time (Hu and Lagakos 2007) for selected 
time-varying exposures, for all individuals stratified by their observed survival status
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To further investigate the effect estimate of average OAT dispensation propor-
tion, we proceeded to fit the model in (2) to the observed data, where we used 
the average OAT dispensation proportion and incarceration FPCS as summaries. 
We specified s ∈ {0, 2, 3, 5} for the number of interior knots in the spline, and 
used BIC to select the s; using AIC to select s produced similar results. Figure 2 
illustrates the estimates and 95% confidence intervals for the average OAT dis-
pensation proportion effect, where we included the estimate and 95% confidence 
interval under the Cox regression model, and the curve’s average for reference. 
Here, the average of γˆ(·) is ∫ t

0
� (t)dt∕� , where τ is the maximum domain of γˆ(·). 

We see that the average OAT dispensation proportion effect is highly nonlinear, 
and is generally positive and statistically significant. The Cox regression estimate 
lying above the averaged curve value for time since first recorded OAT dispensa-
tion time scale is attributed to the (relatively) large death rate in the early stage 
of the study as opposed to the late stage, whereas the Cox estimate falls below 
the averaged curve with age as the time scale is due to a higher death rate in 
older individuals. As it is known that opioid tolerance varies with age [32, 35], 
this motivated us to explore the effect of average OAT dispensation proportion 
by first stratifying by birth generation. Table 3 shows the average OAT dispensa-
tion proportion across generations, where the difference of average OAT dispen-
sation proportion between survivors and non-survivors clearly varies across birth 
generations. This justifies the need for birth generation specific effects, and sug-
gests the results from Fig. 2 to be confounded by age group. Figure 3 shows the 
average OAT dispensation proportion effect for each generation for the two time 
scales we considered in Fig. 2. We see that the effects are generally linear (i.e. 
BIC generally selected s = 0) and the effects corroborate with the summary statis-
tics in Table 3. In particular, the effect of average OAT dispensation proportion 
has a clear protective effect against mortality for Millennials & Generation Z.
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Fig. 2   Estimates and 95% confidence intervals for the average OAT dispensation proportion, where the 
time scales are time since first recorded OAT dispensation, and age. The average of the estimated curve 
and corresponding estimate under the Cox regression model are included as references
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Table 3   Average OAT dispensation proportion summary statistics across birth generations

Survivors Non-survivors Total Survivors Non-survivors Total

Greatest & silent generations: 1901–1945 Baby boomers: 1946–1964
 Minimum 0.0012 0.0014 0.0012 Minimum 0.0012 0.0022 0.0012
 1st Quar-

tile
0.1009 0.2539 0.1677 1st Quartile 0.2857 0.4067 0.3123

 Median 0.4244 0.7972 0.6648 Median 0.6991 0.8005 0.7244
 3rd Quar-

tile
0.9272 0.9855 0.9756 3rd Quartile 0.9550 0.9704 0.9610

 Maximum 1 1 1 Maximum 1 1 1
 Mean 0.4900 0.6360 0.5768 Mean 0.6121 0.6731 0.6282
 S.D 0.3836 0.3707 0.3826 S.D 0.3483 0.3271 0.3439
 N 447 654 1,101 N 9,904 3,575 13,479

Generation X: 1965–1980 Millennials & Generation Z: 1981 + 
 Minimum 0.0013 0.0036 0.0013 Minimum 0.0014 0.0023 0.0014
 1st Quar-

tile
0.2750 0.2503 0.2727 1st Quartile 0.2631 0.1415 0.2574

 Median 0.6146 0.5510 0.6076 Median 0.6001 0.4199 0.5929
 3rd Quar-

tile
0.9042 0.8322 0.8978 3rd Quartile 0.8998 0.7500 0.8951

 Maximum 1 1 1 Maximum 1 1 1
 Mean 0.5767 0.5375 0.5729 Mean 0.5693 0.4546 0.5647
 S.D 0.3320 0.3174 0.3308 S.D 0.3335 0.3227 0.3338
 N 18,861 1,998 20,859 N 18,519 781 19,300
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Fig. 3   Estimates and 95% confidence intervals for the average OAT dispensation proportion across each 
birth generation, where the time scale is specified as time since first recorded OAT dispensation, and age
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By estimating the baseline hazard function with the well-known Breslow estima-
tor, we illustrate estimated survival probabilities for various levels of νˆ in Fig. 4. 
These survival probabilities were obtained by fixing all of the other risk factors at 
their reference level, and in particular, fixing the binary one-jump processes to zero. 
Similar to Fig. 3, we can see a clear protective effect of OAT for Millennials and 
Generation Z.
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Fig. 4   Estimated survival probabilities for varying levels of νˆ, where the time scale is specified as time 
since first recorded OAT dispensation, and age. All other risk factors are held fixed at their reference 
level
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Fig. 5   Predicted survival probabilities for 8 randomly selected survivors (two from each of the four birth 
generation groups), where the time scale is specified as time since first recorded OAT dispensation, and 
age
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We randomly selected 8 survivors (2 from each of the four birth generation 
groups) and predicted their survival probabilities based on their observed infor-
mation, over time. We illustrate the survival probabilities in Figure 5, and provide 
information pertaining to these survivors in Table 4. As shown by the descriptive 
statistics in Table 3, individuals from earlier generations have a dramatically lower 
chance of survival relative to those from later birth generations. Although the effect 
of interest is the average OAT dispensation proportion, we can see from Table  4 
that the covariates summarized with a one-jump binary process are correlated with 
each other, which was also reflected in Figure 1. Summarizing these processes while 
accounting for the correlation within these processes is certainly worthy to explore 
for future investigation, especially if the effect of these processes are of interest.

5 � Final Remarks

Motivated by the demand of predicting an individual’s mortality risk given their 
OAT dispensation history, this article directly uses time-invariant summaries of 
internal covariates as covariates in a Cox regression model. Since the entire history 
of internal covariates is generally unavailable, we model these summaries and esti-
mate them from the available data. These summaries can be either specified as a 
function of the entire treatment process, such as an average from follow-up observa-
tions, or unspecified and allow the data to select important features of the covariate 
history. With health records provided by administrative data, we are able to incor-
porate several time-varying exposures within our modeling, and obtain an estimate 
that is closer to the true causal effect. Our results showcases the effect of OAT in our 
population to be non-linear and vary with respect to time of birth. In particular, we 
see a clear protective effect against mortality for Millennials and Generation Z. To 
the best of our knowledge, no other prior study has shown the effect of OAT to be 
non-linear or depend on an individual’s birth generation.

To obtain personalized estimates, we considered stratifying individuals based on 
their birth generation. Rather than stratifying on a time-independent covariate, we 
can alternatively stratify individuals based on levels of a time-dependent covariate 
[12]. In particular, an upcoming publication directly uses ZH(·) in a Cox regression 
model, where individuals stratification is time-varying and depends on levels of 
ZH(·). Since that model directly uses ZH(·), we cannot obtain survival predictions. A 
way to overcome this problem is to use a similar approach as this paper by summa-
rizing internal covariates with ν, and base our stratification around ν.

The method we employ can essentially be summarized by conducting a Cox 
regression model, in which we replace the unknown covariate ν with an estimate νˆ. 
Although this approach is simple, we note that the estimated value can be expressed 
as νˆ = ν + ξ, where ξ has mean zero. In other words, νˆ can be seen as a “noisy 
measurement” of ν, and is ill-advised to directly replace ν [19]. Our analysis results 
align with descriptive statistics, and we hence believe that the induced bias is rela-
tively small. An appropriate inference procedure to remove this bias, such as the 
conditional score approach [27] appears to be a promising approach to address this 
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issue, all while minimizing the computation intensity that likelihood-based proce-
dures are known to suffer from.
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