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ABSTRACT
Administrative databases have become an increasingly popular data
source for population-based health research. We explore how mor-
tality risk is associated with some health service utilization process
via linked administrative data. A generalized Cox regression model
is proposed using a time-dependent stratification variable to sum-
marize lifetime service utilization. Recognizing the service utiliza-
tion over time as an internal covariate in the survival analysis, con-
ventional likelihood methods are inapplicable. We present an esti-
mating function based procedure for estimating model parameters,
and provide a testing procedure for updating the stratification lev-
els. The proposed approach is examined both asymptotically and
numerically via simulation. We motivate and illustrate the proposed
approach using an on-going program pertaining to opioid agonist
treatment (OAT) management for individuals identified with opi-
oid use disorders. Our analysis of the OAT data indicates that the
OAT effect on mortality risk decreases in successive OAT attempts,
in which two risk classes based on an individual’s treatment episode
number are established: one with 1–3 OAT episodes, and the other
with 4+ OAT episodes.
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1. Introduction

Administrative databases have become an increasingly popular data source to conduct
population-based health research [13] due in part to its rich collection of service utilization
records [15]. By deriving time-varying risk factors from these records, researchers have
explored their association with a clinically meaningful event, such as an individual’s mor-
tality time [1,3,9]. This is typically done by specifying an extendedCox regressionmodel, in
which the time-varying exposures are specified as time-varying covariates. However, since
individuals must be alive in order to have a health record, such time-varying covariates
are internal [16]. The challenge brought on by internal covariates is that the conventional
relationship between the hazard and survivor functions no longer holds, which prevents
likelihood-based inference procedures to be adopted.
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There are existing statistical approaches to overcome this challenge by re-framing the
response or internal covariate processes. For example, one may use only part of the inter-
nal covariate history [26,32,33], or by introducing a multistate process in which levels of
the internal covariate process and survival status define various states [2,8,10,11]. These
approaches cannot yield the effect of the entire internal covariate process onmortality, and
the multistate process demands modelling all of the state transitions. Alternatively, one
may jointly model the event time and the internal covariate processes [23,31,34]. These
approaches require modelling the underlying association of the two processes, and the
implementation can be computationally expensive.

We propose a generalized Cox regression model with time-dependent stratification to
formulate the effect of service utilization. Our modelling allows the data to report which
strata are similar and naturally leads to dynamic grouping. This can aid in interpreting
the analysis outcomes, and serve to improve the computational speed and the estima-
tor’s efficiency. We present an estimating function based procedure for model parameter
estimation, and may be calculated by adapting the well-known R functions for survival
analysis.

Motivated by the ongoing opioid epidemic, linked administrative health service records
between 1996 and 2018 in British Columbia, Canada were provided to help improve the
overall quality of care for individuals identified with an opioid use disorder [20]. We use
this data to estimate themortality risk of an individual given their current history of opioid
agonist treatment (OAT) usage. As an individual must be alive to receive treatment, this
variable is an internal covariate in the survival analysis. Previous studies have indicated that
retention on an OAT can reduce the mortality risk of people with an opioid use disorder
[17,25,27]. Revisiting such a study with administrative health records not only provides a
real-world setting to generate scientific evidence on the clinical management of an opioid
use disorder, but also control for additional time-varying exposures; a limitation with prior
studies [25].

The rest of the paper is organized as follows. We introduce notation and the proposed
modelling in Section 2. We detail the inference procedure in Section 3, and provide a
straightforward testing procedure to update the levels of the stratification variable in a
forward stepwisemanner.We apply the proposed inference procedure to the linked admin-
istrative database that reports historical OAT dispensation records in Section 4. Based
on the main findings from the data application, Section 5 summarizes the results from
a simulation study. Some final remarks are given in Section 7.

2. Notation andmodelling

Let T denote an individual’s survival time since their first observed OAT dispensation,
and Z(t) ∈ {0, 1} denote an individual’s OAT dispensation indicator at time t ≥ 0, and
Z(t) = {Z(u) : 0 ≤ u ≤ t}. Additional covariates (baseline and time-varying) are denoted
by X(t), with X (t) = {X(u) : 0 ≤ u ≤ t} denoting its history up to time t, and letW(t) =
(Z(t),X(t)′)′ denote all covariates at time t. Consider a study with observations on T sub-
ject to a noninformative right-censoring time C. That is, the available information of T is
the pair (T∗, δ), where T∗ = T ∧ C is the follow-up time of an individual, and δ = I(T ≤
C) is the indicator for whether the survival time T is observed. Assume the study col-
lects n independent and identically distributed realizations of (T∗, δ,Z(T∗),X (T∗)). Our
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objective can hence be understood as estimating the association betweenZ(·) and T upon
adjusting for X (·) with right-censored observations of T.

We consider a generalized Cox regression model for the conditional hazard function of
T given Z(t) and X (t) for t>0:

λ(t;Z(t),X (t)) = λ0(t;Z(t)) exp{θ(Z(t))′W(t)}, (1)

where λ0(t;Z(t)) is an arbitrary baseline hazard function, and θ(Z(t)) is a known func-
tion up to finite dimensional parameters, with the dimension of θ(Z(t)) being the same
as W(t). The model in (1) explicitly permits both the regression parameter and baseline
hazard function to vary accordingly with an individual’s current OATdispensation history,
in an attempt to adequately quantify the association between the dispensation process and
mortality risk.

To specify this dependency we consider stratifying individuals into groups based on
their dispensation history, which makes the stratification time-dependent. Let g(Z(t)) ∈
{1, 2, . . . ,G} denote a stratification variable that is fully determined by an individual’s dis-
pensation history up to time t>0, where G < ∞ is known. That is, we let λ0(t;Z(t)) =
λ0g(t) and θ(Z(t)) = θ g = (α′

g ,β
′)′ when g(Z(t)) = g, where θ g is a vector of unknown

regression parameters. Here, αg is a qA-dimensional vector of stratum-specific effects, and
β is a qB-dimensional vector of shared effects across strata. Without loss of generality, we
partition the covariates as W(t) = (WA(t)′,WB(t)′)′, where WA(t) and WB(t) have the
same dimensions as αg and β , respectively. The model in (1) then becomes

λ(t;Z(t),X (t)) = λ0g(t) exp{θ ′
gW(t)}when g(Z(t)) = g, for g = 1, . . . ,G, (2)

which resembles an extended Cox regression model with a time-varying covariate W(t)
and time-dependent strata [14].

A special case of (2) is if all of the baseline hazard functions are specified to be the same,
so that the model reduces to

λ(t;Z(t),X (t)) = λ0(t) exp{θ ′
gW(t)}when g(Z(t)) = g, for g = 1, . . . ,G. (3)

To assess if themodel (3) fits the data better than (2), one could start by fitting themodel (2),
then plot the estimates of λ01(t), ··· , λ0G(t) over time, and assess if the model in (3) is
appropriate. Alternatively, one could specify λ0g(t) = λ01(t) exp{γg} for g = 2, . . . ,G, and
test whether γg = 0 for all g = 2, . . . ,G.

A special case of (3), and a further special case of (2), is obtained by not conducting any
time-dependent stratification, in which we specify the model in (1) to be the extended Cox
regression model [12]:

λ(t;Z(t),X (t)) = λ0(t) exp{θ ′W(t)}. (4)

Clearly, we can recover (4) from (3) by testing α1 = · · · = αG.
Since (2) is the most general of the three models presented, we take it as our primary

model. The forthcoming estimation procedure is under (2), and we discuss how to slightly
modify the estimation procedure to estimate parameters under (3) or (4). As the regression
parameter captures the effect of the stratification variable in (3), the resulting estimates
permit us to identify if the group effects between successive groups is significant. This leads
us to dynamically update the stratification variable which not only improves the computing
time to obtain the estimates, but also the statistical efficiency of the resulting estimator.
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3. Estimation procedure

Let Ni(t) = I(Ti ≤ t), Yi(t) = I(T∗
i ≥ t), and � = (α′

1, . . . ,α
′
G,β

′)′ be all the regression
parameters in model (2), with �0 denoting the true value of �.

3.1. Estimating regression parameters

Under (2), [22] showed that if all of the covariates in W(·) are external, the partial score
function of � is U(�) = (UA

1 (θ1)
′, . . . ,UA

G(θG)′,UB(�)′)′, where

UA
g (θ g) =

∫ ∞

0

∑
i:g(Zi(t))=g

Yi(t)

[
WA

i (t) − EAg (t, θ g)
Eg(t, θ g)

]
dNi(t), g = 1, . . . ,G,

UB(�) =
G∑

g=1

∫ ∞

0

∑
i:g(Zi(t))=g

Yi(t)

[
WB

i (t) − EBg (t, θ g)
Eg(t, θ g)

]
dNi(t),

Eg(t, θ) =
∑

j:g(Zj(t))=g

Yj(t) exp{θ ′W j(t)},

ECg (t, θ) =
∑

j:g(Zj(t))=g

Yj(t) exp{θ ′W j(t)}WC
j (t), C ∈ {A,B}.

One would then estimate�with the solution toU(�) = 0. However, as Z(t) is an internal
covariate, we can only view U(�) as an estimating function for �. By applying mod-
ern empirical process theory [18], we show in the Supplementary Material that U(�0) is
centred at zero asymptotically under (2), and a reasonable estimator for � is therefore
the solution to U(�) = 0. We also show in the Supplementary Material that �̂ con-
verges almost surely to �0 under (2), and further establish the asymptotic distribution of√
n(�̂ − �0), in which the corresponding asymptotic variance of �̂ can be consistently

estimated with a Huber-like sandwich estimator ÂV(�̂) = �̂
−1

(�̂)�̂(�̂)�̂
−1

(�̂) with
�̂(�) = − 1

n
∂

∂�
U(�) and �̂(�) = 1

n
∑n

i=1 �̂i(�)�̂i(�)′, where

�̂i(�) = (�̂A
i1(θ1)

′, . . . , �̂A
iG(θG)′, �̂B

i (�)′)′,

�̂A
ig(θ) =

∫ ∞

0
Yi(t)I(g(Zi(t)) = g)

[
WA

i (t) − EAg (t, θ)

Eg(t, θ)

]
dM̂ig(t, θ),

�̂B
i (�) =

G∑
g=1

∫ ∞

0
Yi(t)I(g(Zi(t)) = g)

[
WB

i (t) − EBg (t, θ g)
Eg(t, θ g)

]
dM̂ig(t, θ g),

M̂ig(t, θ) = Ni(t)I(g(Zi(t)) = g) −
∫ t

0
Yi(u)I(g(Zi(u)) = g) exp{θ ′W i(u)}d�̂0g(u),

and �̂0g(·) is a consistent estimator for �0g(·). Observe that if all of the time-varying
covariate(s) are indeed external covariate(s), we recognize �̂(�̂) as the observed infor-
mation matrix under (2), so the corresponding variance estimator would simplify to
ÂV(�̂) = �̂

−1
(�̂).
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We can estimate � = θ under (4) by fixing G ≡ 1, so that U(�) = UB(�). We can
also estimate the regression parameters in (3) by first includingWA,(2)(t), . . . ,WA,(G)(t) in
W(t), whereWA,(g)(t) = I(g(Z(t)) = g) × WA(t), and then proceed as if themodel is (4).
Moreover, slight modifications to the arguments presented in the Supplementary Material
establishes the large sample properties of the resulting estimators under (3) and (4).

3.2. Estimating baseline hazard functions

For fixed g ∈ {1, . . . ,G}, we view d�0g(t) = λ0g(t)dt as a finite-dimensional parameter
upon treating λ0g(·) as a piece-wise constant function between uncensored survival times.
With θ g fixed under (2), the following estimating equation is unbiased:∑

i:g(Zi(t))=g

Yi(t)[dNi(t) − exp{θ ′
gW i(t)}d�0g(t)] = 0. (5)

By solving for d�0g(t), this promotes the estimator

d�̂0g(t; θ g) =
∑

i:g(Zi(t))=g

Yi(t)dNi(t)∑
j:g(Zj(t))=g Yj(t) exp{θ ′

gW j(t)} . (6)

Here, we take the convention that 0/0 = 0. By replacing the unknown θ g with its cor-
responding estimate, θ̂ g = (α̂

′
g , β̂

′
)′, the baseline hazard function is estimated with a

Breslow-like estimator d�̂0g(t; θ̂ g). Under the regularity conditions presented in the Sup-
plementary Material, we can show that d�̂0g(t; θ̂ g) converges almost surely to d�0g(t).
Furthermore, the weak convergence of d�̂0g(t; θ̂ g) is also established, so that either 1 − α∗
pointwise confidence intervals or 1 − α∗ confidence bands for d�0g(t) can be constructed.

If we instead consider the model in (3), the estimating equation (5) is slightly modified
to

G∑
g=1

∑
i:g(Zi(t))=g

Yi(t)[dNi(t) − exp{θ ′
gW i(t)}d�0(t)] = 0,

and d�0(t) is estimated with

d�̂0(t; θ g) =
G∑

g=1

∑
i:g(Zi(t))=g

Yi(t)dNi(t)∑G
h=1

∑
j:g(Zj(t))=h Yj(t) exp{θ ′

hW j(t)}
. (7)

The resulting estimator for d�0(t) under (4) then arises by fixing θ g = β in (7).

3.3. Forward stepwise grouping based onWald-type testing

In the case where αg fully captures the group effect and the levels of the stratification vari-
able can be viewed as ordinal, onemay question if the difference between successive groups
are statistically significant. If the difference is not significant, we can simplify the model
in (3) by merging groups g−1 and g together and re-estimate � with the updated groups;
otherwise, we keep these two groups separate from each other. Proceeding in this manner
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would result in identifying H ≤ G data driven risk classes, which would provide a gain of
efficiency by reducing the number of parameters to estimate.

To carry out this procedure, consider the following hypothesis test for a fixed g ∈
{2, . . . ,G}:

H0 : αg = αg−1 vs. Ha : αg �= αg−1. (8)

Based on the asymptotic normality of �̂, we can construct a Wald test statistic

Jg = (α̂g − α̂g−1)
′
[
Var(α̂g − α̂g−1)

]−1
(α̂g − α̂g−1). (9)

With the variance of �̂ estimated with ÂV(�̂), we can therefore estimate Var(α̂g − α̂g−1)

with CgÂV(�̂)C′
g , where Cg is a constant such that Cg� = αg − αg−1. Under H0 in (8),

Jg ∼̇ FqA(·), where FqA(·) denotes the χ2-distribution function with qA degrees of free-
dom. We hence rejectH0 if Jg > F−1

qA (1 − α∗), where α∗ is the type I error rate. As the test
proceeds in a forward stepwise manner, we refer to this test as the forward stepwise Wald
test.

4. Analysis of provincial OAT dispensation records

We applied the proposed inference procedure to the provincial health administra-
tive database. Specifically, individuals identified with an opioid use disorder between
01/01/1996 and 10/01/2018 in British Columbia, Canada, health records in the form
of drug dispensations (British Columbia Ministry of Health [6]), hospital and emer-
gency department admissions (British Columbia Ministry of Health [4]), physician billing
records (British ColumbiaMinistry of Health [5]), incarceration records (Ministry of Pub-
lic Safety and Solicitor General [19]), and deaths (British Columbia Vital Statistics Agency
[7]) were provided. Only individuals with at least one OAT dispensation and at least 18
years old on their first recorded OAT dispensation date were included in the analysis. In
total, there are n = 54,739 individuals included in our study.

We classified individuals to receive an OAT if they had a pharmaceutical health record
indicating they were dispensed OAT. Since dispensation records were unavailable for inpa-
tient services, we follow [21], and assumed that an OAT was provided to an individual
during their (entire) hospitalization if they either had an OAT dispensation record within
five days (i) before their admission date, or (ii) after their discharge date. Risk factors
included in our analysis were based on a preliminary analysis conducted by [21]. The time-
independent covariates we included are sex (male vs. female), birth generation (indicators
for birth year: 1901–1945 vs. 1946–1964 vs. 1965–1980 vs. 1981+), health authority (indi-
cators of residence region: Fraser Health vs. Interior vs. Vancouver Coastal vs. Vancouver
Island vs. Northern), and year category (category corresponding to first observed OAT dis-
pensation date: 1996–2000 vs. 2001–2006 vs. 2007–2012 vs. 2013–2018). The time-varying
covariates we included areOATdispensation indicator (by time t), alcohol or other substance
use disorders (by time t),mental illness or chronic pain (by time t),HCV or HIV/AIDS (hep-
atitis C virus or human immunodeficiency virus or acquired immunodeficiency syndrome
by time t), indicator of ever receiving a sedative, (use of a sedative by time t), and ever on
PharmaCare Plans C or G (indicator of poor socio-economic status by time t). Although
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Table 1. Estimates of regression coefficients under the Cox regression
model (4).

Covariate names Estimate S.E. P-value∗

OAT Status −1.0182 0.0265 < 0.0001
Sex (vs. Female) – – –
Male 0.2239 0.0261 < 0.0001
Birth Generation (vs Greatest & Silent Generations) – – –
Baby Boomers −1.3215 0.0443 < 0.0001
Generation X −2.1372 0.0478 < 0.0001
Millennials & Generation Z −2.2044 0.0591 < 0.0001
Heath Authority (vs Fraser Health) – – –
Interior 0.1455 0.0387 0.0002
Vancouver Coastal 0.1041 0.0302 0.0006
Vancouver Island 0.0674 0.0362 0.0624
Northern 0.0015 0.0677 0.9822
Year Category (vs. 1996–2000) – – –
2001–2006 0.0789 0.0330 0.0166
2007–2012 0.1509 0.0391 0.0001
2013–2018 0.4733 0.0492 < 0.0001
Alcohol or Other Substance Use Disorders 0.4492 0.0424 < 0.0001
Ill Mental Health or Chronic pain −0.1898 0.0431 < 0.0001
Hepatitis C Virus or HIV/AIDS 1.1748 0.0272 < 0.0001
Ever Received a Sedative 0.4756 0.0332 < 0.0001
Ever on PharmaCare Plans C or G 0.0290 0.0299 0.3329
Incarceration Status −1.6318 0.1782 < 0.0001
Number of Incarcerations 0.0061 0.0028 0.0305

∗: Under the hypothesis of a null effect. Note: The reported standard-error (S.E.) estimates
of �̂ correspond to the square-root of the diagonal elements of ÂV(�̂). Estimates that
are bold-faced are statistically significant with the type 1 error rate set at α∗ = 5%.

the variable health authority is in principle a time-varying covariate, the data showed this
variable to be rather stable, and is therefore treated as a time-independent variable. There
were also few changes in sex over time, many of which were attributed to data entry errors.

We began our analysis by fitting an extended Cox regression model (4) to the observed
data. The parameter estimates under time since first observed OAT dispensation time scale
are displayed in Table 1, where we can see that the effect of OAT dispensation indicator
is negative and statistically significant, which corroborates with prior studies. We remark
that the first observed OAT dispensation may not necessarily corresponding to the true
actual first OAT dispensation for an individual, since the dispensation records only cap-
tures recordswithin BritishColumbia during the data extractionwindow. The implications
of this is that time zero may be informative. We additionally consider age as the time scale,
where the results are presented in the Supplementary Material in Table S1.

We proceeded to fit a stratified Cox regression model (2), in which individuals were
stratified according to their OAT episode number at time t, where an OAT episode at time
t is the number of long term not dispensed OAT to dispensed OAT transitions by time t,
as illustrated in Figure 1. We specified G = 9 levels for the stratification variable: (i) 1
OAT episode; (ii) 2–3 OAT episodes; (iii) 4–5 OAT episodes; (iv) 6–7 OAT episodes; (v)
8–10 OAT episodes; (vi) 11–15 OAT episodes; (vii) 16–20 OAT episodes; (viii) 21–30 OAT
episodes; and (ix) 30+ OAT episodes. The G levels were selected based on a combination
of summary statistics for the number of OAT episodes individuals experienced by their
end of follow-up date, as well as expert opinion. The estimates of � with θ g = αg when
g(Z(t)) = g, are presented in Figure 2. We see the OAT dispensation indicator, the birth
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Figure 1. Top: A multistate representation of the OAT dispensation process. The OAT episode of an
individual at time t is the number of (long-term) not dispensed OAT to dispensed OAT transitions they
experience by time t, with individuals initializing in OAT episode 1. Bottom: A plot of 100 randomly
selected survivors and non-survivors and their OAT episode numbers over time.

generation indicators, and the ever on PharmaCare plans C or G indicator appear to have
varying effects across strata, whereas the other effects are constant. We also present the
LOESS-smoothed estimates of λ0g(·) in Figure 3, in which we see the estimates overlap
with one another, aside from the groups corresponding to “large” OAT episode groups,
and motivates us to consider fitting (3). The corresponding estimates with age as the time
scale are presented in Figures S1 and S2.

We proceeded to fit model (3) with the same stratification variable, and θ g = αg
when g(Z(t)) = g, which produced similar results to Figures 2 and S1. We updated our
modelling by specifying the constant effects to be β , which will serve to reduce the compu-
tational intensity by estimating fewer parameters, as well as improve the efficiency of the
estimates. The parameter estimates upon specifying θ g = (α′

g ,β
′)′ when g(Z(t)) = g are

illustrated in Figure 4 and Table 2. We can see that the estimates that vary across strata are
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Figure 2. Estimates of regression coefficients under the stratified Cox regression model (2), where the
time scale is time since first observed OAT dispensation, and θg = αg. Variables with a gray background
appear to have a constant effect across strata. As a reference, we illustrate the estimated effect under the
Cox model (4) with a red line.

quite similar to their corresponding estimates in Figure 2, and the estimates in Table 2 are
similar to their corresponding estimates shown in Table 1. The corresponding estimates
with age as the time scale are presented in Figure S3 and Table S2.

We proceeded to conduct the forward stepwise Wald test in Section 3.3 to update the
stratification variable, where the results are shown in Tables S4 and S5. For each test, we
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Figure 3. Smoothed estimates of λ0g(·) under (2), where we stratify by the OAT episode number at
time t.

displayed the estimates of both αg−1 and αg , the test statistic Jg in (9), and the resulting p-
value. By applying a Bonferonni correction for the multiple testing, we specified the type I
error rate to be α∗ = 0.05/8. The results of the test under both time since first observed OAT
dispensation and age time scales reveals that the stratification variable should be updated to
the followingH = 2 levels: (i) 1-3OATepisodes; and (ii) 4+OATepisodes. The resultswith
the updated stratification are illustrated in Figure 5 and Table 3, in which we see the OAT
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Figure 4. Estimates of regression coefficients under the stratified Cox regression model (3), where the
time scale is time since first observed OAT dispensation. Variables with effect αg are illustrated below.

dispensation indicator effect has a higher protective effect against mortality for individuals
with more OAT episodes, whereas the opposite is true for the birth generation indicator
and ever on PharmaCare plans C or G effects. The corresponding estimates with age as the
time scale are presented in Figure S4 and Table S3.

5. Simulation study

We conducted three simulation studies to jointly examine the finite-sample performance
of the proposed estimator and assess the performance of the forward stepwise Wald test.
Specifically, we generated data based on the Cox regression model in the first simulation
study, generated data based on the stratified Cox regression model with a shared baseline
hazard function in the second simulation study, and assessed the robustness of the for-
ward stepwise Wald test against model misspecification in the third simulation study. We
summarized our simulation results into tables presented as Supplementary Material.



12 T. J. THOMSON ET AL.

Table 2. Estimates of regression coefficients under the stratified Cox
regression model (3), where the time scale is time since first observed
OAT dispensation.

Covariate names Estimate S.E. P-Value∗

Sex (vs. Female) – – –
Male 0.2340 0.0260 < 0.0001
Heath Authority (vs Fraser Health) – – –
Interior 0.1535 0.0385 0.0001
Vancouver Coastal 0.1079 0.0301 0.0003
Vancouver Island 0.0723 0.0366 0.0484
Northern 0.0114 0.0675 0.8653
Year Category (vs. 1996–2000) – – –
2001–2006 0.0791 0.0338 0.0191
2007–2012 0.1430 0.0387 0.0002
2013–2018 0.4619 0.0498 < 0.0001
Alcohol or Other Substance Use Disorders 0.4329 0.0447 < 0.0001
Ill Mental Health or Chronic pain −0.1887 0.0434 < 0.0001
Hepatitis C Virus or HIV/AIDS 1.1704 0.0273 < 0.0001
Ever Received a Sedative 0.4791 0.0335 < 0.0001
Incarceration Status −1.6286 0.1726 < 0.0001
Number of Incarcerations 0.0014 0.0030 0.6492

∗: Under the hypothesis of a null effect. Note: Variableswith effectβ are tabulated
below.

Table 3. Estimates of regression coefficients under the stratified
Cox regression model (3) following the forward stepwise Wald test,
where the time scale is time since first observedOAT dispensation, and
θg = (α′

g,β
′)′.

Covariate names Estimate S.E. P-Value∗

Sex (vs. Female) – – –
Male 0.2327 0.0262 < 0.0001
Heath Authority (vs Fraser Health) – – –
Interior 0.1517 0.0387 0.0001
Vancouver Coastal 0.1062 0.0302 0.0004
Vancouver Island 0.0706 0.0362 0.0514
Northern 0.0062 0.0676 0.9273
Year Category (vs. 1996–2000) – – –
2001–2006 0.0819 0.0329 0.0129
2007–2012 0.1488 0.0391 0.0001
2013–2018 0.4706 0.0492 < 0.0001
Alcohol or Other Substance Use Disorders 0.4457 0.0423 < 0.0001
Ill Mental Health or Chronic pain −0.1904 0.0430 < 0.0001
Hepatitis C Virus or HIV/AIDS 1.1725 0.0273 < 0.0001
Ever Received a Sedative 0.4768 0.0333 < 0.0001
Incarceration Status −1.6244 0.1793 < 0.0001
Number of Incarcerations 0.0023 0.0029 0.4324

∗: Under the hypothesis of a null effect. Note: Variableswith effectβ are tabulated
below.

5.1. Data generation

We generated right-censored observations of an event time, and an alternating binary pro-
cess that affects the event time’s hazard. We specified n = 10,000 independent units, so
that the number of units roughly matches the sample size in our data application. For each
study unit, we generated observations as follows:



JOURNAL OF APPLIED STATISTICS 13

Figure 5. Estimates of regression coefficients under the stratified Cox regression model (3) following
the forward stepwise Wald test, where the time scale is time since first observed OAT dispensation, and
θg = (α′

g,β
′)′. Variables with effect αg are illustrated below.

(i) Generate two baseline covariates, X1 and X2, where X1 ∼ Uniform(0, 1), and X2 ∼
Bernoulli(0.5).

(ii) Generate a time-varying alternating binary indicator, Z(t). To be consistent with our
data application, we specified Z(0) ≡ 1, g(Z(0)) ≡ 1, and g(Z(t)) is determined by
the number of zero-to-one changes up to time t. We specifiedG = 10, and keep units
with more than 10 zero-to-one changes in group G. To generate Z(t), we simulated
the time an individual changes their binary indicator status from the exponential
distribution, where the rates ρ0(Z(t)) = ρ0g and ρ1(Z(t)) = ρ1g for the time Z(t)
transitions to 0 and 1, respectively, when g(Z(t)) = g. Here, we specified

ρ0g =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
20 ifg ∈ {1, 2, 3}
30 ifg ∈ {4, 5, 6}
50 ifg = 7
10 ifg ∈ {8, 9, 10}

and ρ1g =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
10 ifg ∈ {1, 2, 3}
20 ifg ∈ {4, 5, 6}
50 ifg = 7
5 ifg ∈ {8, 9, 10}

.
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We remark that a ‘large’ sample size is needed to ensure that enough information is
available to estimate θ g within a simulated dataset, especially for large values of g.

(iii) With W(t) = (Z(t),X1,X2)
′ as the vector of covariates at time t, we discretized the

time interval for which Z(t) is constant into subintervals of length �t = 0.0001, and
simulated the event occurrence at time t as a Bernoulli random variable with success
probability λ†(t;Z(t),X1,X2) × �t, where

λ†(t;Z(t),X1,X2) = λ0f (θ ′
gW(t)),

with f (x) = ex or f (x) = (1 + x)I(x ≥ 0) + (1 − x)I(x < 0), and the specification of
f (·) depends on the particular simulation outcome presented in Sections 5.2, 5.3, and
5.4. This procedure continues until we observe a success.

(iv) Generate (non-informative) censoring times from the exponential distribution with
rate λC ∈ {0.5, 1.5} to produce right-censored event times.

Overall, this data generation procedure produces the following independent observations

< /p >< p > {(T∗
i , δi,Zi(T∗

i ),Xi1,Xi2) : i = 1, . . . , n},

with T∗
i = Ti ∧ Ci, and δi = I(Ti ≤ Ci). With a simulated dataset, we proceeded to esti-

mate� and conduct the forward stepwiseWald test.We replicated the data generation and
inference procedure 150 times.

5.2. Simulation outcome: reduction to the Cox regressionmodel

We first conducted a simulation study where we generated event times under the Cox
regression model with the baseline hazard function specified as a constant over time. That
is, we generated event times under the hazard model

λ†(t;Z(t),X1,X2) = λ0 exp{θ ′W(t)},

with λ0 = 1.75 and θ = (−1, 0,−0.5)′. Based on the two specifications of λC, this resulted
in (on average) approximately 29% and 52% of event times being right-censored. We con-
sidered two approaches to estimate θ : (a) solve U(θ) = 0 in which we fix G ≡ 1, and (ii)
use the coxph function in the survivalR package [29], where the results are presented
in Table S6. As expected, we see that the estimates of θ are equivalent across the two pro-
cedures, and θ̂ and ÂV(θ̂) are consistent estimators for θ and AV(θ), respectively. Note
that the estimated standard errors appear to be similar under the two approaches. This is
likely due to fitting the appropriate data generating model to the data, which is resulting in
�−1(θ) ≈ �(θ).

We then fit (3) to the simulated data, where we present the results in Table S7. We
observed the standard error estimates to be larger relative to the standard error estimates
under the Cox regression model. This is due to all n units estimating θ in the Cox regres-
sionmodel, whereas only units in group g contribute to the estimation of θ g .We proceeded
to conduct the forward stepwise Wald test from Section 3.3, and assess its performance in
correctly recovering the Cox regression model. We present matrices in Table S8, where
the (g, g′) element is the proportion groups g and g′ are classified to the same class, with
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α∗ = 0.05. The matrices inform us that there is approximately a 95% chance of group g−1
(correctly) being merged together with group g. Therefore, we would anticipate that the
Cox regression model should be recovered approximately 55% of the time. In order to
correctly recover the Cox regression model 95% of the time, we propose a Bonferonni cor-
rection and specify α∗ = 0.05/9. As shown in Table S9, we see that the test can adequately
recover the Cox regression model.

5.3. Simulation outcome: correctly identifying the number of risk classes in the
stratified Coxmodel

We conducted a simulation study where we generated event times under the stratified Cox
regression model with a constant baseline hazard function. That is, we generated event
times under the following hazard model

λ†(t;Z(t),X1,X2) = λ0 exp{θ ′
gW(t)},

with λ0 = 1.75, and θ g =

⎧⎪⎨⎪⎩
(−0.5,−2,−2)′ ifg ∈ {1, 2, 3}
(−1, 0,−0.5)′ ifg ∈ {4, 5, 6}
(−2, 2, 1.5)′ ifg ∈ {7, 8, 9, 10}

. Based on the two spec-

ifications of λC, this resulted in (on average) approximately 38% and 73% of event times
being right-censored.

We started out by naively fitting the Cox regression model in (4), where our results are
summarized in Table S10.We note that the resulting estimates resemble a weighted average
of the θ g parameters across the G groups. Furthermore, our standard error estimates were
generally larger relative to the standard error estimates reported by the coxph function,
as expected.

We then proceeded to fit the true data generatingmodel in (2) to the simulated data. The
results are summarized in Table S11.We observed that the estimates �̂ and ÂV(�̂) appear
to consistently estimate � and AV(�), respectively. Similar to Section 5.2, we generally
saw the standard error estimates for our first two parameter settings to be smaller than
the standard error estimates for the last two parameter settings, which is attributed to the
smaller censoring rate.

We then conducted the forward stepwise Wald test to assess its performance in cor-
rectly recovering the three data-generating treatment classes. Our results illustrated in
Table S12 informs us that there is approximately a 95% chance that group g−1 is merged
together with group g if they belong to the same class. In fact, groups g−1 and g were never
combined together if they do not belong to the same risk class. By applying a Bonferonni
correction, our test performed adequately in recovering the three risk classes.

5.4. Simulation outcome: robustness tomodelmisspecification

We conducted a simulation study where we generated event times under a misspecified
stratified Cox regression model. Specifically, we generated event times under the hazard
model

λ†(t;Z(t),X1,X2) = λ0f (θ ′
gW(t)),
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where λ0 = 1.75, and f (x) = (1 + x)I(x ≥ 0) + (1 − x)I(x < 0) for g = 1, . . . , 10. Upon
specifying λC = 0.5 and λC = 1.5, this resulted in (on average) approximately 29% and
62% of individuals having right-censored death times, respectively. The purpose of this
simulation study is to assess if the forward stepwise Wald test is robust to model misspec-
ification.

By estimating the model parameters under the stratified Cox regression model (2),
Tables S13 and S14 shows that the forward stepwise Wald test is robust to model
misspecification upon applying a Bonferonni correction.

6. On sample size determination

Our simulation study demonstrates that we can adequately recover the true risk classes
with our specification of�, where the type I error rate is α∗ = 0.05/9, and n = 10,000.We
anticipate a larger sample size is required to correctly identify the correct risk classes if we
instead specify difference between stratum-specific effects across successive groups to be
“small”. We now consider the minimum sample size needed for the forward stepwiseWald
test to achieve a certain power, 1 − β∗ given α∗, and effect difference αg − αg−1. In other
words, consider the following simple hypothesis for a fixed g ∈ {2, . . . ,G}:

H0 : αg − αg−1 = 0 vs. Ha : αg − αg−1 = γ g �= 0. (10)

Here, γ g is the smallest value in whichwe view the difference in effects to bemeaningful. In
order for the forward stepwise Wald test to conduct the hypothesis test in (10) adequately,
wewant to rejectH0 with probability 1 − β∗ whenHa is true, and rejectH0 with probability
α∗ when H0 is true. Here, β∗ is referred to as the type II error rate, and 1 − β∗ is referred
to as the power of the test. Recall in Section 3.3 that under H0 in (10), Jg ∼̇ FqA(·), where
FqA(·) denotes the χ2-distribution function with qA degrees of freedom. However, under
Ha in (10), Jg ∼̇ FqA,νg (·), where FqA,νg (·) denotes the non-central χ2-distribution with qA
degrees of freedom with non-centrality parameter νg , with

νg = (αg − αg−1)
′
[
Var(αg − αg−1)

n

]−1
(αg − αg−1). (11)

Then for α∗ and β∗ given, we want to find νg such that

FqA,νg (F
−1
qA (1 − α∗)) = β∗.

Hence, we can proceed to solve for n in (11) as

ng = νg
[
(αg − αg−1)

′Var(αg − αg−1)
−1(αg − αg−1)

]−1 .

But since we considered the test (10) for a fixed g, we iterate over g to obtain n2, . . . , nG,
and conclude that the sample size needed to correctly recover the correct group structure
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with type I error α∗ and type II error β∗ is

n = max{ng : g = 2, . . . ,G}.

7. Conclusion

We proposed a generalized Cox regression model, under which we conducted time-
dependent stratification, where the strata are defined in terms of the history of an internal
time-varying covariate process. We adopted an estimating-equation based inference pro-
cedure that bypasses interpretation challenges brought on by constructing the likelihood
function. Large sample properties of the proposed estimators were established, and our
simulation study shows that we are able to consistently estimate both the regression param-
eters and the estimate’s standard error. To determine if the effects between successive
groups are significant, we proposed a Wald test that sequentially tests if groups should be
merged. Upon applying a Bonferonni correction, we showed through a simulation study
that this test can correctly recover the true grouping structure in a satisfactorymanner, and
is robust to model misspecification. We applied the proposed methodology to a provincial
health administrative database pertaining to individualswith at least oneOATdispensation
record, in which two risk classes based on an individual’s history of OAT use were iden-
tified. We summarized an individual’s history of the OAT dispensation process with their
OAT episode number, which can loosely be conceived as the number of observed long term
not dispensed OAT to dispensed OAT transitions. Other summaries, such as proportion of
time dispensed OAT can seamlessly be used as an alternative stratification variable.

As pointed out by a referee, comparing our modelling with other methods that accom-
modate internal covariates, such as joint modelling and landmarking can provide insight
towards our model’s strengths and limitations. We defer the discussion between the mod-
elling in this paper and joint modelling to a manuscript based on a manuscript based on
Chapter 4 of [30]. In terms of landmarking however, there are two reasons why we have
not adopted the landmarking framework: (i) researchers have shown jointmodelling to out
perform landmarking [24,28]; and (ii) Figure 1 illustrates an individual’s OATdispensation
history is dynamic, and it is hence difficult to identify high quality landmark time(s).

The same referee also identified an extension to our proposed modelling by includ-
ing a frailty term in (2), (3), and (4). The modelling presented in this paper explicitly
assumes that the stratification variable g(Z(t)) serves as an adequate summary of the
covariate process up to time t. We have conducted some preliminary simulation stud-
ies which demonstrates our proposed modelling to perform well as long as g(Z(t)) can
summarize the majority of the process. In other words, our modelling is robust to this
heterogeneity as long as the variance of the frailty term is small.

Although our methodology applies to an alternating binary process, our modelling is
able to accommodate for more generally formulated treatment processes. For example,
consider Z(t) ∈ {0, 1, . . . ,K} with K ≥ 2. In terms of our data application, the different
levels of Z(t) could be defined in terms of OAT type (methadone vs. buprenorphine-
naloxone), dosage levels, and other relevant factors pertaining to OAT usage, such as
receiving treatment under medical supervision. Conducting such an analysis could allow
practitioners to identify which form of OAT is best suited for a particular individual,
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and the potential hazards or benefits of different dosing and administration guidelines
governing treatment.
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