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SUMMARY

Motivated by a cancer survivorship program, this paper explores event counts from two categories of indi-
viduals with unobservable membership. We formulate the counts using a latent class model and consider
two likelihood-based inference procedures, the maximum likelihood estimation (MLE) and a pseudo-MLE
procedure. The pseudo-MLE utilizes additional information on one of the latent classes. It yields reduced
computational intensity and potentially increased estimation efficiency. We establish the consistency and
asymptotic normality of the proposed pseudo-MLE, and we present an extended Huber sandwich estima-
tor as a robust variance estimator for the pseudo-MLE. The finite-sample properties of the two-parameter
estimators along with their variance estimators are examined by simulation. The proposed methodology is
illustrated by physician-claim data from the cancer program.

Keywords: Efficiency vs. robustness; Mixture Poisson model; Pseudo-maximum likelihood estimation; Robust
variance estimation; Supplementary information.

1. INTRODUCTION

The population of cancer survivors has been increasing rapidly because of improvements in cancer
treatments. These survivors are often at risk of subsequent and ongoing problems that are mainly treatment-
related. The evaluation or development of strategies for long-term management requires risk assess-
ment, particularly for those diagnosed with cancer at a young age. The Childhood, Adolescent, Young
Adult Cancer Survivorship (CAYACS) research program at the British Columbia (BC) Cancer Agency
(http://www.cayacs.ca), using existing population-based data sets and record-linkage methodology, has
been conducting a series of epidemiologic, clinical, and health-service studies relating to the survivorship
issues of cancer survivors diagnosed at age 0 to 19; see McBride and others (2010). A recent CAYACS
project, summarized in McBride and others (2011), reports an analysis of the physician claims associated
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2 H. WANG AND OTHERS

with a cohort of young cancer survivors. It shows that the demand for physician care among these survivors
is considerably greater than that of a similar age and sex group in the general population.

The analysis of McBride and others (2011) provides insights into the physician-visit patterns of the
survivors and also raises further issues. For example, the comparison of the cancer survivors as a group to
the general population may implicitly reveal whether the number of survivors in the cohort at risk of later
and ongoing problems is significant. It does not explicitly relate this risk to the consequences of the original
cancer diagnoses. Moreover, the analysis of McBride and others (2011) indicates that the physician-visit
frequency of the females in the cohort is significantly higher than that of the males. It is not clear whether
this identifies sex as an important risk factor or simply reflects an overall pattern of physician visits. In
fact, such a pattern is also seen in the general population.

Preliminary analyses indicated that, while many cancer survivors visit physicians rather frequently,
some survivors in the cohort have physician-visit patterns similar to those of the general population. A per-
ception among researchers in the field is that some cancer survivors can live as normally as people without
a cancer diagnosis. This motivated us to model the survivor cohort as a mixture of two latent classes: the
groups “at-risk” and “not-at-risk” of later effects of the original cancer diagnoses. The individuals in the
at-risk group have a potentially higher frequency of physician visits, while the individuals in the not-at-risk
group have the same physician-visit patterns as the general population.

Goodman (1974) formalizes the latent class model introduced by Lazarsfeld and Henry (1968) and
derives the maximum likelihood estimation (MLE) procedure. The latent class model has had a wide range
of applications; see, for example, Magidson and Vermunt (2002), Pepe and Janes (2007), and Vermunt
(2008). The formulation provides us with a convenient framework to study the features of physician visits
due to the later and ongoing treatment-related problems of cancer survivors. It allows us to evaluate sep-
arately the visit frequencies of the two latent groups in the cohort and may better assess the risk of later
and ongoing problems. The model also leads to a natural comparison of the survivors in the at-risk group
to the general population, if the not-at-risk group in the cohort is defined as the class that has the same
physician-visit frequency as the general population.

In an analysis with a latent class model, one usually needs to specify the underlying probability
model in a parametric form for each of the latent classes to avoid non-identifiability problems in gen-
eral. Moreover, in addition to issues such as computational robustness when implementing likelihood-
based procedures with latent class models (e.g. Hall and Shen, 2010), the efficiency of the MLE will
drop considerably because of the increased number of parameters. A model with two latent classes has
almost three times as many parameters as a comparable marginal model. On the other hand, in many prac-
tical situations, information is readily available on one of the two latent classes. In the CAYACS case,
the provincial medical insurance system collects rich information on the general population. These con-
siderations yielded a pseudo-MLE procedure, an alternative way to estimate the model parameters using
additional/supplementary information. The procedure is potentially more efficient and robust as well as
relatively easy to implement.

In this paper, we motivate and illustrate the proposed model and associated inference procedures using
the CAYACS program. The methodology is not limited to the program and can be applied more broadly.
The rest of this paper is organized as follows. Section 2 introduces the notation and a mixture Poisson model
for the physician-visit records of the CAYACS cohort. In Section 3, we first present the MLE for the model
parameters with the primary data and an application of the expectation–maximization (EM) algorithm to
compute the MLE. We then propose a pseudo-MLE procedure using the additional information on the
not-at-risk group, namely the physician-visit records from a collection of individuals selected from the
general population. We establish the consistency and asymptotic normality of the pseudo-MLE and derive
its asymptotic variance. Two variance estimators for the pseudo-MLE are presented. Section 4 reports the
simulation studies of efficiency and robustness that we conducted to examine the finite-sample proper-
ties of the inference procedures together with the two variance estimators. An analysis of the CAYACS
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Analysis of counts with two latent classes 3

physician-visit data via the proposed methodology is presented in Section 5. Some final remarks are given
in Section 6.

2. NOTATION AND MODEL

Let N represent a subject’s count of physician visits over the time period (0, T ] and Z be his/her covariate
vector. The observation period in the CAYACS application is the time interval starting when a BC resident
with a cancer diagnosis at a young age becomes a survivor, and ending at his/her death or the end of the
data collection. Here, a survivor is a person who has survived at least five years since his/her original
cancer diagnosis. We allow the observation period to vary from subject to subject.

To formulate the two strata with unobservable membership, corresponding to the at-risk and not-at-risk
groups in the survivor cohort, we introduce a latent binary variable η to indicate whether a subject belongs
to the at-risk group. Denote E(η|Z) = P(η = 1|Z) by p(Z), and the conditional expectations of N for
the at-risk and not-at-risk groups by E(N |η, T, Z) = �η(T, Z) for η = 1 and 0, respectively. Thus, the
expectation of N conditional on T and Z is E(N |T, Z) = �1(T, Z)p(Z) + �0(T, Z)[1 − p(Z)]. This
latent class model is further specified into a finite mixture Poisson model as follows.

We assume that the counts N of the two groups follow the Poisson distribution with the conditional
expectations �η(T, Z) for η = 1, 0. This formulation includes the popular zero-inflated Poisson (ZIP)
model (e.g. Lambert, 1992) as a special case with �0(T, Z) ≡ 0. This paper adopts the commonly used
parametric specifications for p(Z) and �η(T, Z), the logistic and loglinear regression models:

logit{p(Z;α)} = α0 + α′
1 Z (2.1)

and

log{�1(T, Z;β)} = β0 + β ′
1 Z + β2 log T, log{�0(T, Z; θ)} = θ0 + θ ′

1 Z + θ2 log T . (2.2)

Our estimation procedures and discussions are applicable to other parametric specifications with little
modification.

Our primary interest lies in estimating the parameters α = (α0, α
′
1)

′, β = (β0, β
′
1, β2)

′, and θ =
(θ0, θ

′
1, θ2)

′ in p(Z;α), �1(T, Z;β), and �0(T, Z; θ) as given by (2.1) and (2.2) with the primary data
{(Ni , Ti , Zi ) : i = 1, . . . , n}, a set of n independent and identically distributed realizations of (N , T, Z).
For the CAYACS application, a consistent estimator of α gives a consistent estimator of the risk probability
p(Z;α) and then yields a measure on how likely the survivors with covariates of Z having the later effects
of the original cancer diagnoses. The estimator of α can also be used to identify risk factors associated
directly with the later effects. Consistent estimators of β and θ , on the other hand, can be used to identify
factors associated with the high visit frequency of the at-risk group and the low frequency of the not-at-risk
group. Moreover, comparisons of β and θ based on their estimates can detect differences in the physician-
visit frequency between the two groups. These applications are illustrated in Section 5 with the CAYACS
physician-claim data.

3. LIKELIHOOD-BASED INFERENCE PROCEDURES

With the model in Section 2, the event count N conditional on T and Z follows the mixture Poisson
distribution

P(N | T, Z;α, β, θ) = P(N | η = 1, T, Z;β)p(Z;α) + P(N | η = 0, T, Z; θ)[1 − p(Z;α)], (3.1)
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4 H. WANG AND OTHERS

where P(N | η, T, Z) is the probability mass function of the Poisson distribution with a mean of �η(T, Z).
We consider the MLE procedure based on the primary data. The EM algorithm (Dempster and others,
1977) is adapted to compute the MLE of the parameters. We then assume that there is a consistent estimator
for θ in �0(T, Z; θ), the event frequency model for the not-at-risk group. A pseudo-MLE procedure is
then proposed for estimating the parameters α in the risk model (2.1) and β in the event frequency model
for the at-risk group in (2.2).

3.1 Maximum likelihood estimation

Under the mixture Poisson model (3.1), the likelihood function of (α, β, θ) based on the primary data
{(Ni , Ti , Zi ) : i = 1, . . . , n} is

L(α, β, θ; N | T, Z) =
n∏

i=1

P(Ni | Ti , Zi ;α, β, θ). (3.2)

The MLE of (α, β, θ) may be attained by directly maximizing (3.2) or its log-transformation. With the
usual regularity conditions, the MLE (α̂, β̂, θ̂ ) has asymptotic normality. That is, as n → ∞,

√
n(α̂ −

α, β̂ − β, θ̂ − θ)′ converges in distribution to the multivariate normal distribution with mean zero and
variance FI(α, β, θ)−1. Here, FI(α, β, θ) is the Fisher information matrix; it can be consistently estimated
by −n−1∂2 log L(α, β, θ; N | T, Z)/∂(α, β, θ)2 with the MLE plugged in.

Applying the EM algorithm gives us an alternative procedure for finding the MLE of (α, β, θ); this
algorithm is potentially more intuitive and easier to implement. The estimation procedure is presented in
Section A of supplementary material available at Biostatistics online. In particular, we consider the “full
data” as {(Ni , ηi , Ti , Zi ) : i = 1, . . . , n} in the application. We can verify the conditions that ensure the
resulting sequence of estimates converges to the MLE (α̂, β̂, θ̂ ) from L(α, β, θ; N | T, Z) in (3.2). This
procedure with the ZIP model coincides with the estimation procedure presented in Hall and Shen (2010).
We may follow their discussion to provide a variation of the EM algorithm.

3.2 Pseudo-MLE

Suppose that a set of independent observations from the general population, denoted by {(N j , Tj , Z j ) :
j = 1, . . . , m}, is available in addition to the primary data from the survivor cohort. One may estimate
(α, β, θ) with the likelihood function based on the primary data in combination with the supplemen-
tary information, which is the product of L(α, β, θ; N | T, Z) in (3.2) and Lsupp(θ) = ∏m

j=1 P(N j | η j ≡
0, Tj , Z j ; θ). The efficiency of the MLE for the combined data is presumably higher than that of the MLE
discussed in Section 3.1 based on the primary data. However, the computational issues remain.

In many practical situations, the sample size m can be quite large relative to the size n of the primary
data, and thus the supplementary data alone can lead to a consistent estimator of θ with sufficient efficiency.
To make a comparison between the survivor cohort and the general population, for example, the CAYACS
program collected data from the general population with a sample size (m) 10 times the size of the primary
data (McBride and others, 2011); in fact, m could be larger in the application if necessary. We propose the
following pseudo-MLE for estimating (α, β) using such an estimator of θ from the supplementary data,
to achieve an easily implementable estimator with reasonably high efficiency.

Assume that the available supplementary data yield θ̃ , an estimator for the parameters in the frequency
model associated with the not-at-risk group, and

√
m(θ̃ − θ) converges in distribution to the normal distri-

bution with zero mean and variance AVθ̃ (θ) as m → ∞. The MLE of θ from the aforementioned Lsupp(θ)

based on the supplementary data, for example, satisfies the assumptions about θ̃ . It yields a pseudo-MLE
of (α, β), denoted by (α̃, β̃), maximizing the likelihood function (3.2) with respect to (α, β) and with θ
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Analysis of counts with two latent classes 5

fixed at θ̃ . This estimation procedure is considerably simpler than the procedure for computing the MLE
α̂ and β̂ jointly with θ̂ in Section 3.1. The computational intensity is reduced by roughly one-third in gen-
eral. The pseudo-MLE can be found by applying the adapted EM algorithm in Section A of supplementary
material available at Biostatistics online, with θ = θ̃ throughout the algorithm.

Following the arguments in Gong and Samaniego (1981), we establish the consistency and the asymp-
totic normality of (α̃, β̃). Specifically, as n → ∞ and m → ∞, and assuming that n/m → k > 0 and θ̃ is
independent of the primary data,

√
n(α̃ − α, β̃ − β)′ converges to the normal distribution with mean zero

and variance

AV(α̃,β̃)(α, β, θ) = I −1
11 + k I −1

11 I12AVθ̃ (θ)I21 I −1
11 . (3.3)

The derivation is outlined in Section B of supplementary material available at Biostatistics online. The
matrices I11, I12, and I21 in (3.3) are the blocks in the partitioned Fisher information matrix associated
with the likelihood function (3.2) as given by (2.6) in the Appendix of supplementary material available
at Biostatistics online. The expression for the asymptotic variance in (3.3) shows that the efficiency of the
pseudo-MLE (α̃, β̃) can be close to that of the MLE of (α, β) with a known θ when either k or AVθ̃ is
small. This indicates that the efficiency of the pseudo-MLE (α̃, β̃) may exceed the efficiency of the MLE
of (α, β) jointly obtained with the MLE of θ using the primary data only.

Note that the corresponding blocks of −n−1∂2 log L(α, β, θ; N | T, Z)/∂(α, β, θ)2 are consistent esti-
mators for the matrices I11, I12, and I21 with the pseudo-MLE plugged in. They, together with a consistent
estimator of AVθ̃ (θ), naturally form a consistent estimator of AV(α̃,β̃)(α, β, θ). The derivation of (3.3)
and the aforementioned consistent variance estimator require the underlying model specification. In prac-
tice, a more robust variance estimator is often preferable, as the Huber sandwich variance estimator for
the variance of the MLE is preferred to anticipate possible model misspecification (Huber, 1967). This
consideration leads us to estimate I −1

11 , the first term in (3.3), with the corresponding Huber sandwich
estimator, which results in an extended Huber sandwich estimator. The details of this alternative variance
estimator are presented in Section C of supplementary material available at Biostatistics online.

4. SIMULATION STUDY

We conducted simulation studies to examine the finite-sample properties of the MLE and pseudo-MLE in
terms of efficiency and robustness to model misspecification. The numerical studies in this section and
the next were carried out using the R package for statistical computing (http://www.r-project.org).

We simulated n independent individuals from the two latent classes: the at-risk and not-at-risk groups.
We followed the analysis outcomes reported by McBride and others (2011) to choose the parameter val-
ues for the data generation in the simulations. Specifically, we simulated two potential risk factors: a
binary variable sex as the indicator of a male subject, and a continuous variable (age) as the standard-
ized age of an individual at the beginning of the study. These two risk factors together with the latent
indicator η of the at-risk group and the individual observation time T were generated as follows. For
the i th individual in the study, (i) sexi ∼ Bin(1, 1

2 ) (the Bernoulli distribution with a success probabil-
ity of 1

2 ), (ii) agei ∼ Beta(0.7, 0.8) (the Beta distribution with the parameter values chosen to follow
the distribution of the standardized age variable in the CAYACS program), (iii) ηi ∼ Bin(1, pi ), where
logit(pi ) = 1 − sexi − 0.8agei , and (iv) Ti ∼ Beta(2, 1). The event counts Ni were then generated in the
following two settings, designed to assess the efficiency and robustness of the estimators.

Efficiency Study. Conditional on (ηi , Ti , sexi , agei ), the event count Ni was generated from the Poisson
distribution as follows: (i) for ηi = 1, the mean is �1(Ti , sexi , agei ) = Ti exp(1.8 − 0.6sexi − 0.5agei );
(ii) for ηi = 0, the mean is �0(Ti , sexi , agei ) = Ti exp(0.5 − 0.3sexi − 0.25agei ).
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6 H. WANG AND OTHERS

Robustness Study. For individual i , ξi was generated from the gamma distribution with mean 1 and vari-
ance γi : ξi ∼ Gamma(1, γi ). Conditional on (ηi , Ti , sexi , agei , ξi ), Ni was generated from the Poisson
distribution with mean ξi�ηi (Ti , sexi , agei ), where �ηi (Ti , sexi , agei ) was the same as in the Efficiency
Study for ηi = 1 or 0. Note that if γi > 0, the variance of the simulated event count Ni conditional on
(ηi , Ti , sexi , agei ) is (1 + γi )�ηi (Ti , sexi , agei ). Three model misspecification scenarios were simulated:
Case (i) γi = γ > 0 regardless of ηi ; Case (ii) γi = γ > 0 if ηi = 1 and γi = 0 if ηi = 0; Case (iii) γi = 0 if
ηi = 1 and γi = γ > 0 if ηi = 0. We chose the parameter γ to be 1

2 , 1, or 2 to simulate mild, medium, or
severe overdispersed counts, respectively.

We formed the observed (primary) data as {(Ni , Ti , sexi , agei ) : i = 1, . . . , n} in the simulations. The
supplementary information was generated independently as realizations of (N , T , sex, age) from a group
of m independent individuals with the same distribution as the not-at-risk group in each of the simulation
settings.

Each of the experimental settings described above was repeatedly simulated 250 times. For each simu-
lated data set, we evaluated both the MLE and the pseudo-MLE for the parameters in the latent class model,
the mixture Poisson model in Section 2. We also evaluated the standard error estimators of the MLE and the
pseudo-MLE based on the conventional variance estimator for the MLE and the Huber sandwich variance
estimator, and the two variance estimators for the pseudo-MLE given in Section 3 and Section C in supple-
mentary material available at Biostatistics online. The evaluations of θ̃ used in the pseudo-MLE procedure,
the estimates of the parameters θ in the frequency model for the not-at-risk group based on the supplemen-
tary information, were computed using the R function glm. Both the MLE and pseudo-MLE procedures
were implemented by (a) maximizing the observed data likelihood and the pseudo-likelihood functions
via an R optimization function and (b) applying the EM algorithm described in Section 3. The resulting
estimates from different optimizers were close to the estimates from the EM algorithm. The estimates via
the EM algorithm are discussed below.

Table 1 presents a summary of the parameter estimates and the asymptotic standard error estimates in
the Efficiency Study with n = 500 and m = 5000 based on 250 replicates. The sample means (sm) of all the
parameter estimators are close to the corresponding true values of the parameters: the relative differences
range from 0% to 3.7%. This verifies the consistency of both the MLE and the pseudo-MLE. The sample
standard errors (sse) of the pseudo-MLE estimators overall appear smaller than those of the MLE estima-
tors. That is, the supplementary information along with the smaller number of parameters to be estimated
may compensate for the pseudo-MLE’s potential loss of efficiency, leading to better efficiency than that
for the evaluable MLE with the primary data. Table 1 also presents the sm of the two standard error esti-
mators, the conventional and sandwich estimators, for both the MLE and the pseudo-MLE. The two sets
of sm of the estimated standard errors, smse (or smpse) and smse.sw (or smpse.sw), are essentially the same.
They are close to the corresponding sse of the estimators, with the absolute differences ranging from 0.2%
to 3.6%. This shows that the accuracy of both the standard error estimators is satisfactory in practice.

We considered additional simulation settings in the Efficiency Study. For comparison, we evaluated the
MLE of (α, β, θ) based on the primary data combined with the realizations of the latent indicator η. The
sm and sse were close to those associated with the pseudo-MLE. To further explore the contribution of
the supplementary information, we evaluated two other sets of estimators for α and β: the MLEs with θ

fixed at the true value and the pseudo-MLE with θ estimated based on the supplementary information with
size m = 500. As anticipated, the sse of the MLEs with the true θ were smaller than the sse of the MLEs
with θ jointly estimated, and the sse of the pseudo-MLEs for m = 500 were slightly larger than those for
m = 5000, which were close to those for the MLE with the true θ . We also evaluated the estimators with
the size of the observed data set to n = 100. The findings were the same.

Regardless of the value of the overdispersion parameter γ , the simulation outcomes in the three cases of
the Robustness Study show that the MLE is sensitive to model misspecification overall, but the robustness
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Analysis of counts with two latent classes 7

Table 1. Simulation outcomes: Efficiency Study

(Primary data n = 500; repetition number = 250)

Parameter α0 α1 α2 β0 β1 β2 β3 θ0 θ1 θ2 θ3

True value 1 −1 −0.8 1.8 −0.6 −0.5 1 0.5 −0.3 −0.25 1

MLE of (α, β, θ)

sm† 1.000 −1.026 −0.770 1.790 −0.599 −0.500 1.006 0.487 −0.295 −0.261 1.009
sse‡ 0.231 0.291 0.397 0.081 0.053 0.070 0.056 0.192 0.090 0.142 0.129

sm†
se 0.243 0.302 0.420 0.084 0.058 0.069 0.060 0.197 0.094 0.141 0.133

sm†
sw.se 0.248 0.312 0.433 0.083 0.057 0.068 0.058 0.198 0.096 0.142 0.135

Supplementary data m = 5000

Pseudo-MLE of (α, β) MLE of θ

sm 1.003 −1.011 −0.775 1.791 −0.602 −0.499 1.005 0.503 −0.301 −0.251 1.000
sse 0.220 0.266 0.350 0.080 0.048 0.066 0.055 0.030 0.013 0.020 0.021
smpse 0.231 0.252 0.382 0.083 0.051 0.066 0.059 0.029 0.014 0.022 0.021
smsw.pse 0.232 0.252 0.383 0.081 0.050 0.064 0.058 0.029 0.014 0.022 0.021

†The sample means of the parameter estimates (sm), the conventional standard error estimates (smse), and the sandwich standard
error estimates (smsw.pse).
‡The sample standard errors (sse) of the parameter estimates.

of the pseudo-MLE varies. The sm for the MLE reveal some serious biases in the simulated situations,
especially for the regression coefficients in the risk model. The differences of the sm for the pseudo-MLE
from the true parameter values are considerably smaller. Particularly in Case (iii), which simulated situ-
ations where only the underlying frequency model for the not-at-risk group (i.e. the group where η = 0)
was misspecified, the pseudo-MLE estimates are basically unbiased. In all three cases, the sm of the stan-
dard error estimates based on the conventional variance estimator for MLE have discrepancies compared
with the sse associated with both the MLE and the pseudo-MLE estimators. The sm of the corresponding
sandwich standard error estimator, on the other hand, is close to the sse. This verifies the robustness of the
sandwich estimator. We summarize the simulation results of Case (iii) with m = 5000, γ = 1 in Table 2.
The other results are presented by Table 1 in Section D of supplementary material available at Biostatistics
online.

Another simulation study was conducted to explore the difference in robustness between the MLE and
pseudo-MLE in situations similar to Case (iii). We substituted the mixed Poisson model with a mixture
of two Poisson models for the group η = 0: the mean of one component was the same as the mean of
the group η = 0 in the Efficiency Study, and the mean of the second component was close to the mean
of the group η = 1. We varied the proportion of the second component in the mixture from 10% to 80%,
and observed that the corresponding bias with the MLE of (α, β) changed from minor to major, while
the pseudo-MLE of the parameters remained close to the true values. This further suggests the benefit of
using supplementary information. See Table 2 for a summary of the simulation outcomes in Section D of
supplementary material available at Biostatistics online.

5. ANALYSIS OF CAYACS PHYSICIAN VISITS

This section presents an analysis of the CAYACS physician-visit records using the methodology described
in the previous sections.
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8 H. WANG AND OTHERS

Table 2. Simulation outcomes: Case (iii) of Robustness Study

(Primary data n = 500; repetition number = 250)

Parameter α0 α1 α2 β0 β1 β2 β3 θ0 θ1 θ2 θ3

True value 1 −1 −0.8 1.8 −0.6 −0.5 1 0.5 −0.3 −0.25 1

MLE of (α, β, θ)

sm† 1.305 −0.623 −0.462 1.762 −0.606 −0.499 1.003 −0.384 −0.513 −0.418 1.140
sse‡ 0.253 0.247 0.381 0.085 0.051 0.073 0.059 0.575 0.259 0.420 0.422

sm†
se 0.231 0.221 0.351 0.066 0.031 0.047 0.047 0.326 0.122 0.188 0.226

sm†
sw.se 0.244 0.250 0.394 0.083 0.051 0.072 0.060 0.526 0.257 0.407 0.370

Supplementary data m = 5000
Pseudo-MLE of (α, β) GEE estimate of θ

sm 1.190 −1.119 −0.845 1.800 −0.507 −0.436 0.980 0.494 −0.297 −0.252 1.003
sse 0.237 0.225 0.358 0.080 0.044 0.066 0.056 0.061 0.035 0.048 0.041
smpse 0.243 0.242 0.382 0.079 0.042 0.059 0.056 0.067 0.032 0.050 0.047
smsw.pse 0.230 0.229 0.361 0.078 0.045 0.062 0.056 0.067 0.032 0.050 0.047

†The sample means of the parameter estimates (sm), the conventional standard error estimates (smse), and the sandwich standard
error estimates (smsw.pse).
‡The sample standard errors (sse) of the parameter estimates.

5.1 Study description and preliminary analysis

The CAYACS program that motivated this research is primarily concerned with people in BC under the age
of 20, diagnosed with cancer from 1980 to 1999, who survived five years or longer after the diagnosis. The
survivor cohort has n = 1962 subjects; see McBride and others (2010) for more information. We consider
one of CAYACS’s objectives, to evaluate the cohort’s physician-visit frequency and patterns from 1986 to
2006, to compare the cohort with the general population, and to identify risk factors for later effects. To
avoid potential collinearity in the regression analysis, we chose the following six variables as covariates
from the list of potential risk factors identified by the study team: sex (male vs. female), age at study entry
(five years after the cancer diagnosis), socioeconomic status (SES, high vs. low based on the neighborhood
income of residence at start of follow-up), relapse or second cancer (yes vs. no relapse or second cancer
status at start of follow-up), cancer diagnosis period (1990s vs. 1980s), and cancer treatment (chemo
only, radiation only, both chemo and rad, or others). A standardized age value (age − 5)/20 was used in the
analysis. To focus on the primary interest of this paper, we excluded individuals either missing information
for the six variables or with an observation period of zero length, and a few outliers. This reduced the size
of the primary data to n = 1628. The summary statistics of the six covariates are presented in Table 3.

The CAYACS program selected from the BC population 19 620 people, 10 times the number in the
survivor cohort, matching the cohort in sex and birth year. It obtained their physician claims after the
age of five years from 1986 to 2006 (McBride and others, 2011). We removed those people who were
older in 1986 than (20 + 5) = 25 years, the oldest possible age at that time of the survivors, and who
had missing covariates. We also excluded a few outliers. This gave a set of physician-claim data from the
general population of size m = 16 494. The summary statistics of sex, SES, and age at entry for the sample
of the general population are presented in Table 3. The population sample has distributions that match the
survivor cohort for sex and SES but not age at entry.

We analyzed the physician-claim records from the cohort supplemented with the records from the sam-
ple of the general population. Visits to both GPs and specialists were considered in the analysis. The
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10 H. WANG AND OTHERS

summary statistics of the observation length associated with the cohort and the population sample are
given in Table 3. They indicate that the cancer survivors had shorter observation periods in general.

Table 3 in Section E of supplementary material available at Biostatistics online summarizes the
quasi-Poisson regression analyses conducted with the physician records from the cohort and the popu-
lation sample separately. Adjusted for the independent variables, the frequency of physician visits appears
significantly higher in the cohort. In both data sets, male subjects had many fewer physician visits than
female subjects had. This is in agreement with the results reported in McBride and others (2011). In addi-
tion, the analysis found that, in contrast with the significantly lower visit frequency associated with the
high SES group in the general population, there is no significant difference between the two SES groups
in the cohort. It also revealed a rather different pattern for the frequency increase trend of the survivors.
The analysis indicates that the visit counts are highly overdispersed: the estimates for the overdispersion
parameter are φ̂ = 23.40 and 31.90 for the general population and the survivor cohort, respectively. The
larger overdispersion for the survivor cohort, along with its higher overall visit frequency, signals potential
strata of physician visits in the cohort.

5.2 CAYACS data analysis under a latent class model

We then used the latent class model in Section 2 to formulate the physician-claim data of the survivor
cohort. We evaluated the MLE and pseudo-MLE presented in Section 3. Table 4 summarizes the two sets
of analysis outcomes. Both the MLE and pseudo-MLE analyses identified several significant risk factors
for later effects: (i) relapse or second cancer, (ii) diagnosis in 1980s rather than 1990s, and (iii) treatment
with radiation only or both radiation and chemo therapies rather than other treatments. The pseudo-MLE
also found a significantly higher risk rate associated with female survivors.

For illustration, we present in Figure 1 the estimated at-risk probability functions of age at entry together
with pointwise approximate 95% confidence intervals from the MLE and pseudo-MLE for three typical
groups: Group A—females diagnosed in the 1980s, with relapse/second cancer, who received radiation
treatment; Group B—females diagnosed in the 1980s, without relapse/second cancer, who received radi-
ation treatment; and Group C—males diagnosed in the 1990s, without relapse/second cancer, and with
treatment other than chemo/radiation. The risk of later effects for the three groups is found by both the
MLE and pseudo-MLE to be significantly different. People in Group A seem likely to suffer such effects,
and those in Group C have a low risk.

The MLE and pseudo-MLE analyses are consistent with the findings of a significantly lower visit rate
associated with male survivors across the two risk groups and a similar association with the length of the
observation period in the not-at-risk group. The two sets of outcomes indicate different magnitudes of the
visit frequency in the two strata, the at-risk and not-at-risk groups. See Figure 2 for the estimated means
of the visit counts over time from the MLE and pseudo-MLE for the two risk strata. The MLE analysis
showed that the visit frequency was not significantly associated with either age at study entry or SES
across the two risk strata. This is not in agreement with the quasi-Poisson regression outcomes. However,
the pseudo-MLE analysis, using the quasi-Poisson estimates for the general population for the not-at-risk
group, yielded results for the visit frequency of the at-risk group similar to those of the MLE analysis.
Figure 2 presents the estimated means of the cumulative visit counts of the two risk strata over time, along
with pointwise approximate 95% confidence intervals, from the MLE and pseudo-MLE for female and
male subjects with low SES and average age of entry.

To verify the findings of the pseudo-MLE and further assess its efficiency, we evaluated the MLE
with the data from the survivor cohort in combination with the sample data from the general population,
described at the beginning of Section 3.2. The parameter estimates from the MLE with the combined
data together with their estimated standard errors are presented in Table 4 in Section E of supplementary
material available at Biostatistics online. They appear almost identical to the corresponding estimates from

 at Sim
on Fraser U

niversity on D
ecem

ber 2, 2013
http://biostatistics.oxfordjournals.org/

D
ow

nloaded from
 

http://biostatistics.oxfordjournals.org/
http://biostatistics.oxfordjournals.org/


Analysis of counts with two latent classes 11

Fig. 1. Estimated risk probabilities with approximate 95% confidence intervals for three groups: Group A. Female,
diagnosed in 1980s, with relapse/second cancer, and treated with radiation therapy; Group B. Female, diagnosed
in 1980s, no relapse/second cancer, and treated with radiation therapy; Group C. Male, diagnosed in 1990s, no
relapse/second cancer, and treated without chemo/radiation therapy.

Fig. 2. Estimated mean functions of cumulative physician-visit counts with approximate 95% confidence intervals,
for survivors with low SES and average age at entry.
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12 H. WANG AND OTHERS

Table 4. Estimates of parameters and standard errors for the CAYACS data†

MLE Pseudo-MLE

Factor Estimate se.sw Estimate pse.sw

In the risk model
Intercept −0.322 (0.204) −0.683 (0.188)
Male (vs. female) −0.355 (0.207) −0.315 (0.130)
Age at study entry −0.041 (0.324) −0.111 (0.219)
SES high (vs. low) −0.092 (0.232) 0.028 (0.132)
Relapse/second cancer (vs. not) 1.200 (0.215) 1.253 (0.177)
Diagnosis period 1990s (vs. 1980s) −0.964 (0.167) −0.545 (0.129)
Treatment (vs. other) Chemo only 0.107 (0.158) 0.145 (0.151)

Rad only 0.663 (0.229) 0.515 (0.224)
Both 0.362 (0.163) 0.392 (0.162)

In the frequency model for the at-risk group
Intercept 3.656 (0.187) 3.386 (0.111)
Male (vs. female) −0.206 (0.070) −0.180 (0.047)
Age at study entry 0.095 (0.099) 0.125 (0.076)
SES high (vs. low) −0.005 (0.072) −0.023 (0.046)
ln(time length) 0.476 (0.066) 0.592 (0.041)

GEE estimates Based
In the frequency model for the not-at-risk group on supp. data
Intercept 1.560 (0.137) 0.751 (0.038)
Male (vs. female) −0.353 (0.070) −0.362 (0.011)
Age at study entry 0.162 (0.103) 0.306 (0.019)
SES high (vs. low) 0.028 (0.077) −0.047 (0.011)
ln(time length) 0.897 (0.053) 1.263 (0.013)

†Significant effect with p-value �0.05 in boldface.

the pseudo-MLE. For comparison, Figures 1 and 2 in the Appendix of supplementary material available at
Biostatistics online display the estimated risk probabilities and average physician-visit frequencies based
on the three sets of parameter estimates: the MLE with only the cohort data, the MLE with the combined
data, and the pseudo-MLE.

We remark that, under the mixture Poisson model assumed in the MLE and pseudo-MLE anal-
yses, the variance of the counts conditional on T, Z is the mean E(N | T, Z) plus p(Z;α)[1 −
p(Z;α)][�1(T, Z;β) − �0(T, Z; θ)]2. This together with the parameter estimates under the latent class
model yields estimates for the overall overdispersion parameter for the survivor cohort of 18.11 (for MLE)
and 20.80 (for pseudo-MLE). Compared with the quasi-Poisson analysis for the cohort, about two-thirds
of the large overdispersion of the visit counts can be attributed to the two risk strata by the mixture Poisson
model. The unexplained part of the overdispersion indicates a departure of the counts from this model. In
addition, Table 3 shows that the distributions of age at entry and length of observation for the sample from
the general population are rather different from those for the survivor cohort. Caution is necessary in the
application of these results.

6. FINAL REMARKS

Motivated by the physician-visit project of the CAYACS program, we have proposed a latent class model
to formulate event counts from a cohort with two unobservable strata. In the young cancer survivor cohort,
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these two classes are the at-risk group who suffer long-term effects of their cancer diagnosis and visit
physicians more frequently and the not-at-risk group who have the same physician-visit frequencies as
the general population. Under a mixture Poisson model, we have presented two likelihood-based inference
procedures, the MLE and pseudo-MLE. The pseudo-MLE procedure employs a consistent estimator of
the distribution of the not-at-risk group based on the general population data. Compared with the MLE
with the primary data, it requires less computational effort, has consistency and asymptotic normality, and
has potentially higher efficiency. As observed by a referee, one may apply the proposed methodology with
little modification in situations involving more than two strata.

The simulation results show that the likelihood-based estimating procedures are quite efficient under the
mixture Poisson model, but they have a lack of robustness to model misspecification. Therefore, there is a
need for an inference procedure that is robust to model misspecification. This has led to an ongoing project
to develop an extension of the generalized estimating equations approaches (Liang and Zeger, 1986). The
new approach can be straightforwardly extended to analyze the cost data associated with physician claims
in CAYACS.

Several other investigations would also be worthwhile. The model formulation assumes that the time
effect for the count of interest is proportional to the length of the observation period on average. The
available longitudinal data allow us to consider a semiparametric specification for the mean function of
the counts over time, and thus to check this assumption. Another possibility is to extend the proposed
modeling and inferential procedures to investigate the potential correlation of study individuals, similarly
to, for example, the approach in Lee and others (2006). A third suggestion is to introduce a time-dependent
risk indicator to accommodate evolving cohorts.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at http://biostatistics.oxfordjournals.org.
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