Stat 285. Homework 1 (review) (Due on Monday Jan 10 by 5:00pm, 2023)
Please submit the homework via the course's canvas page.

1. Toss a coin three times.
(i) List the sample space.
(ii) Let $A=\{$ getting exactly one head $\}$ and $B=\{$ the first is head $\}$. Find (a) $\mathrm{P}(A)$ and $\mathrm{P}(B)$, and $(\mathrm{b}) \mathrm{P}(A \bigcup B)$ and $\mathrm{P}(A \bigcap B)$.
(iii) Answer the following questions: (a) Are A and B mutually exclusive? Why? (b) Are A and B independent? Why?
2. Suppose that the probability of suffering a side effect from a certain flu vaccine is 0.003 per person.
(i) Find the probability that 3 out of 100 randomly selected people having the vaccine suffer the side effect.
(ii) People having the vaccine are checked until 1 person suffering the side effect is found. What is the probability that the total number of people checked is 50 ?
(iii) If 1,000 people have the flu vaccine, find an approximate probability that less than 5 people suffer the side effect.
3. Suppose 911 calls received over time in a region follow a Poisson process. Let X be the number of 911 calls within a ten-minute time period in the region with mean 3 . Let Y equal the time (in minutes) to the first 911 call within the time period.
(i) What is the distribution of Y ? Give its probability density function.
(ii) Give $E(X)$ and $\operatorname{Var}(X)$.
(iii) Give $E(Y)$ and $\operatorname{Var}(Y)$.
(iv) Check whether $P(Y \geq 2)$ and $P(Y \geq 6 \mid Y \geq 4)$ are the same. Explain your finding.
4. Suppose X_{1}, X_{2}, X_{3} are mutually independent and have the same distribution with p.d.f. $f(x)=$ $3 e^{-3 x}, 0<x<\infty$ (the exponential distribution). Find
(i) $P\left(1.0<X_{1}<2.5,2.2<X_{2}<3.5\right)$ and $P\left(1.0<X_{1}<2.5,2.2<X_{3}<3.5 \mid X_{2}<4\right)$;
(ii) Give $E\left(X_{1}\right)$ and $\operatorname{Var}\left(X_{1}\right)$.
(iii) $E\left(2 X_{1}+X_{2}-4 X_{3}\right)$ and $\operatorname{Var}\left(2 X_{1}+X_{2}-4 X_{3}\right)$;
(iv) $E\left[X_{1}\left(X_{2}-1 / 3\right)^{2}\right]$ and $E\left[X_{1}\left(X_{2}-1 / 3\right)^{2}\left(X_{3}-1 / 3\right)^{2}\right]$.
5. A candymaker produces mints that have a label weight of 10 grams. Assume that the distribution of the weights of these mints is $N(10,1)$.
(i) Let X be the weight of a single mint selected at random from the production line. Find $P(X<9.9)$ and $P(9.9<X<10.2)$.
(ii) During a particular shift 100 mints are selected at random and weighed. Let \bar{X}_{100} equal the sample mean of the 100 mints selected, i.e., $\bar{X}_{100}=\frac{1}{100}\left(X_{1}+X_{2}+\ldots+X_{100}\right)$. Find $P\left(9.9<\bar{X}_{100}<10.2\right)$.
(iii) Let Y be the number of the mints that weigh less than 9.9 within the 100 selected ones, find $P(Y \leq 20)$.
