STAT-285 Homework 1 Solutions

Question 1 / 10

Part (i) /3

The sample space is

 $S = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}.$

Part (ii) /3

With $A = \{$ getting exactly one head $\}$ and $B = \{$ the first toss lands on a head $\}$, we have

$$\begin{split} A &= \{HTT, THT, TTH\} \\ B &= \{HHH, HHT, HTH, HTT\} \\ A &\cap B &= \{HTT\} \\ A &\cup B &= \{HTT, THT, TTH, HHH, HHT, HTH\}. \end{split}$$

Then the probability of these events happening are

$$P(A) = 3/8$$
$$P(B) = 1/2$$
$$P(A \cap B) = 1/8$$
$$P(A \cup B) = 3/4$$

Part (iii) /4

- Since $A \cap B \neq \emptyset$, events A and B are *not* mutually exclusive.
- Since $P(A)P(B) = 3/8 \times 1/2 = 3/16 \neq P(A \cap B)$, events A and B are not independent.

Question 2 /10

Part (i) /3

Let

- p denote the probability of suffering a side effect; we are given p = 0.003
- *n* denote the number of people in our random sample; we are given n = 100
- X denote the number of people having the side effect

 $\Rightarrow X$ is a random variable, and $X \sim \text{Binomial}(100, 0.003)$.

$$P(X=3) = {\binom{100}{3}} 0.003^3 (1 - 0.003)^{97} \approx 0.0033$$

Part (ii) /3

Let

- p denote the probability of suffering a side effect; we are given p = 0.003
- k denote the total number of people checked; we are given k = 50
- Y denote the number of people checked until the (first) side effect is found \Rightarrow Y is a random variable, and Y ~ Geometric(50, 0.003).

$$P(Y = 50) = (1 - 0.003)^{50-1} 0.003 \approx 0.0026$$

Part (iii) /4

Let

- p denote the probability of suffering a side effect; we are given p = 0.003
- *n* denote the number of people in our random sample; we are given n = 1000
- X denote the number of people having the side effect

 $\Rightarrow X$ is a random variable, $X \sim \text{Binomial}(1000, 0.003)$, and we want to compute

$$P(X < 5) = \sum_{x=0}^{4} {\binom{1000}{x}} 0.003^x (1 - 0.003)^{1000-x}$$

Solution 1: Directly compute this probability

$$P(X < 5) = \sum_{x=0}^{4} {\binom{1000}{x}} 0.003^x (1 - 0.003)^{1000 - x} \approx 0.8155$$

Solution 2: Use the Poisson distribution as an approximation Letting $\lambda = np = 3$,

$$P(X < 5) \approx \sum_{x=0}^{4} \frac{3^x}{x!} e^{-3} \approx 0.8153$$

Solution 3: Use the Normal distribution as an approximation Letting $\mu = np = 3$ and $\sigma^2 = np(1-p)$,

$$P(X < 5) \approx \sum_{x=0}^{4} P(X < x + 0.5) - P(X < x - 0.5)$$

= $P(X < 4.5) - P(X < -0.5)$
 $\approx P(X < 0.87) - P(Z < -2.02)$
 ≈ 0.7862

Question 3 / 10

Part (i) /3

Let

N(y) denote the number of 911 calls within y minutes. For fixed y, N(y) is a random variable, and N(y) ~ Poisson(λy), with λ = 3/10.
Note: N(10) = X.

 \Rightarrow The trick is to recognize that if " $Y \leq y$ " (the first 911 call occurred within the first y minutes), then " $N(y) \geq 1$ " (there must be at least one 911 call within the first y minutes). That is, the events $\{Y \leq y\}$ and $\{N(y) \geq 1\}$ are equivalent. Then

$$F(y) = P(Y \le y)$$

= $P(N(y) \ge 1)$
= $1 - P(N(y) = 0)$
= $1 - e^{-\lambda y}$.

The probability density function of Y is therefore

$$f(y) = \frac{dF(y)}{dy} = \lambda e^{-\lambda y}.$$

That is, $Y \sim \text{Exponential}(\lambda)$, with $\lambda = 3/10$.

Part (ii) /1

Since $X \sim \text{Poisson}(3)$, then E(X) = 3 and Var(X) = 3.

Part (iii) /2

Since $Y \sim \text{Exponential}(10/3)$ from **Part** (i),

$$E(Y) = \frac{1}{3/10} = \frac{10}{3}$$
$$Var(Y) = \frac{1}{(3/10)^2} = \frac{100}{9}.$$

Part (iv) /4

We have for y > x,

$$P(Y \ge y) = 1 - P(Y > y) = e^{-\lambda y}$$

$$P(Y \ge y | Y \ge x) = \frac{P(Y \ge y \cap Y \ge x)}{P(Y \ge x)}$$

$$= \frac{P(Y \ge y)}{P(Y \ge x)}, \text{ since the event } \{Y \ge y\} \text{ implies } \{Y > x\}$$

$$= e^{-\lambda(y-x)}.$$

Then

$$P(Y \ge 2) = e^{-2\lambda} \approx 0.5488$$

 $P(Y \ge 6 | Y \ge 4) = e^{-\lambda(6-4)} = e^{-2\lambda} \approx 0.5488$

 \Rightarrow Given that the first 911 call has not happened within the initial 4 minutes, the probability of the first call happening after 6 minutes (2 minutes later) is the same as the probability of the first call happening after the initial 2 minutes. This property is referred to as the *memoryless* property. The Exponential distribution is the only continuous probability distribution that has this property.

Question 4 /10

Part (i) /3

By independence of X_1 and X_2 ,

$$P(1.0 < X_1 < 2.5, \ 2.2 < X_2 < 3.5) = P(1.0 < X_1 < 2.5)P(2.2 < X_2 < 3.5)$$

= [F(2.5) - F(1.0)][F(3.5) - F(2.2)], with F(x) = 1 - e^{-3x}
= [e^{-7.5} - e^{-3}][e^{-6.6} - e^{-10.5}]

≈ 0.0000656

By the mutual independence between X_1 , X_2 , and X_3 :

$$P(1.0 < X_1 < 2.5, \ 2.2 < X_3 < 3.5 | X_2 < 4) = P(1.0 < X_1 < 2.5, \ 2.2 < X_3 < 3.5)$$

= $P(1.0 < X_1 < 2.5)P(2.2 < X_3 < 3.5)$
= $[F(2.5) - F(1.0)][F(3.5) - F(2.2)]$
 ≈ 0.0000656

Part (ii) /1

Since $X_1 \sim \text{Exponential}(3)$, $E(X_1) = 1/3$ and $Var(X_1) = 1/9$.

Part (iii) /3

$$E(2X_1 + X_2 - 4X_3) = 2E(X_1) + E(X_2) - 4E(X_3)$$

= $2\left(\frac{1}{3}\right) + \left(\frac{1}{3}\right) - 4\left(\frac{1}{3}\right)$
= $-1/3$
 $Var(2X_1 + X_2 - 4X_3) = 4Var(X_1) + Var(X_2) + 16Var(X_3)$, since X_1, X_2, X_3 are independent
= $4\left(\frac{1}{9}\right) + \left(\frac{1}{9}\right) + 16\left(\frac{1}{9}\right)$

$$= 21/9.$$

Part (iv) /3

Note that for random variables X and Y, $E(X) = E\{ E(X|Y) \}$. Also, $Var(X_2) = E((X_2 - 1/3)^2)$ and $Var(X_3) = E((X_3 - 1/3)^2)$. Then

$$E(X_1(X_2 - 1/3)^2) = E\{ E(X_1(X_2 - 1/3)^2 | X_1) \}$$

= $E\{ X_1 E((X_2 - 1/3)^2 | X_1) \}$
= $E\{ X_1 E((X_2 - 1/3)^2) \}$, since X_1 and X_2 are independent
= $E(X_1/9) = 1/27$

$$E(X_1(X_2 - 1/3)^2(X_3 - 1/3)^2) = E\{ E(X_1(X_2 - 1/3)^2(X_3 - 1/3)^2 | X_1, X_2) \}$$

= $E\{ X_1(X_2 - 1/3)^2 E((X_3 - 1/3)^2 | X_1, X_2) \}$
= $E\{ X_1(X_2 - 1/3)^2 E((X_3 - 1/3)^2) \}$, by the mutual independence
= $\underbrace{E\{X_1(X_2 - 1/3)^2\}}_{1/27} / 9$
= $1/243.$

Question 5 /10

Part (i) /2

$$P(X < 9.9) = P\left(\frac{X - \mu}{\sigma} < \frac{9.9 - 10}{1}\right) = P(Z < -0.1) \approx 0.4602$$
$$P(9.9 < X < 10.2) = P(X < 10.2) - P(X < 9.9) = P(Z < 0.2) - P(-0.1) \approx 0.1191$$

Part (ii) /4

Since $X_i \sim N(10, 1) \Rightarrow \bar{X}_{100} \sim N(10, 1/100)$. Then

$$P(9.9 < \bar{X}_{100} < 10.2) = P(\bar{X}_{100} < 10.2) - P(\bar{X}_{100} < 9.9)$$

= $P\left(Z < \frac{10.2 - 10}{\sqrt{1/100}}\right) - P\left(Z < \frac{9.9 - 10}{\sqrt{1/100}}\right)$
= $P(Z < 2) - P(Z < 1)$
 ≈ 0.8186

Part (ii) /4

We have $Y = \sum_{i=1}^{100} I(X_i < 9.9)$, where

$$I(X_i < x) = \begin{cases} 1 & \text{if the } i\text{th mint is} < x \text{ grams} \\ 0 & \text{otherwise} \end{cases}$$

•

Then $Y \sim \text{Binomial}(100, p)$, where $p \approx 0.4602$ from **Part** (i), so that

$$P(Y \le 20) = \sum_{y=0}^{20} P(Y = y)$$

Solution 1: Directly compute this probability

$$P(Y \le 20) = \sum_{y=0}^{20} {100 \choose y} 0.4602^y (1 - 0.4602)^{100-y} \approx 5.1417 \times 10^{-8} \approx 0$$

Solution 2: Use the Normal distribution as an approximation

Let
$$\mu = np = 46.02, \ \sigma^2 = np(1-p) = 24.8416$$

$$P(Y \le 20) \approx \sum_{y=0}^{20} P\left(\frac{(y-0.5) - 46.02}{\sqrt{24.8416}} < Z < \frac{(y+0.5) - 46.02}{\sqrt{24.8416}}\right)$$

$$\approx P(Z < -5.12) - P(Z < -9.33)$$

$$\approx 1.5277 \times 10^{-7}$$

$$\approx 0$$