STAT-285 Homework 1 Solutions

Question $1 \quad / 10$

Part (i) /3
The sample space is

$$
S=\{H H H, H H T, H T H, H T T, T H H, T H T, T T H, T T T\} .
$$

Part (ii) /3

With $A=\{$ getting exactly one head $\}$ and $B=\{$ the first toss lands on a head $\}$, we have

$$
\begin{aligned}
A & =\{H T T, T H T, T T H\} \\
B & =\{H H H, H H T, H T H, H T T\} \\
A \cap B & =\{H T T\} \\
A \cup B & =\{H T T, T H T, T T H, H H H, H H T, H T H\} .
\end{aligned}
$$

Then the probability of these events happening are

$$
\begin{aligned}
P(A) & =3 / 8 \\
P(B) & =1 / 2 \\
P(A \cap B) & =1 / 8 \\
P(A \cup B) & =3 / 4
\end{aligned}
$$

Part (iii) /4

- Since $A \cap B \neq \emptyset$, events A and B are not mutually exclusive.
- Since $P(A) P(B)=3 / 8 \times 1 / 2=3 / 16 \neq P(A \cap B)$, events A and B are not independent.

Question $2 \quad / 10$

Part (i) /3

Let

- p denote the probability of suffering a side effect; we are given $p=0.003$
- n denote the number of people in our random sample; we are given $n=100$
- X denote the number of people having the side effect
$\Rightarrow X$ is a random variable, and $X \sim \operatorname{Binomial}(100,0.003)$.

$$
P(X=3)=\binom{100}{3} 0.003^{3}(1-0.003)^{97} \approx 0.0033
$$

Part (ii) /3

Let

- p denote the probability of suffering a side effect; we are given $p=0.003$
- k denote the total number of people checked; we are given $k=50$
- Y denote the number of people checked until the (first) side effect is found
$\Rightarrow Y$ is a random variable, and $Y \sim \operatorname{Geometric}(50,0.003)$.

$$
P(Y=50)=(1-0.003)^{50-1} 0.003 \approx 0.0026
$$

Part (iii) /4

Let

- p denote the probability of suffering a side effect; we are given $p=0.003$
- n denote the number of people in our random sample; we are given $n=1000$
- X denote the number of people having the side effect
$\Rightarrow X$ is a random variable, $X \sim \operatorname{Binomial}(1000,0.003)$, and we want to compute

$$
P(X<5)=\sum_{x=0}^{4}\binom{1000}{x} 0.003^{x}(1-0.003)^{1000-x}
$$

Solution 1: Directly compute this probability

$$
P(X<5)=\sum_{x=0}^{4}\binom{1000}{x} 0.003^{x}(1-0.003)^{1000-x} \approx 0.8155
$$

Solution 2: Use the Poisson distribution as an approximation

Letting $\lambda=n p=3$,

$$
P(X<5) \approx \sum_{x=0}^{4} \frac{3^{x}}{x!} e^{-3} \approx 0.8153
$$

Solution 3: Use the Normal distribution as an approximation

Letting $\mu=n p=3$ and $\sigma^{2}=n p(1-p)$,

$$
\begin{aligned}
P(X<5) & \approx \sum_{x=0}^{4} P(X<x+0.5)-P(X<x-0.5) \\
& =P(X<4.5)-P(X<-0.5) \\
& \approx P(X<0.87)-P(Z<-2.02) \\
& \approx 0.7862
\end{aligned}
$$

Question $3 \quad / 10$

Part (i) /3

Let

- $N(y)$ denote the number of 911 calls within y minutes. For fixed $y, N(y)$ is a random variable, and $N(y) \sim \operatorname{Poisson}(\lambda y)$, with $\lambda=3 / 10$.
Note: $N(10)=X$.
\Rightarrow The trick is to recognize that if " $Y \leq y$ " (the first 911 call occurred within the first y minutes), then " $N(y) \geq 1$ " (there must be at least one 911 call within the first y minutes). That is, the events $\{Y \leq y\}$ and $\{N(y) \geq 1\}$ are equivalent. Then

$$
\begin{aligned}
F(y) & =P(Y \leq y) \\
& =P(N(y) \geq 1) \\
& =1-P(N(y)=0) \\
& =1-e^{-\lambda y} .
\end{aligned}
$$

The probability density function of Y is therefore

$$
f(y)=\frac{d F(y)}{d y}=\lambda e^{-\lambda y}
$$

That is, $Y \sim$ Exponential (λ), with $\lambda=3 / 10$.

Part (ii) /1

Since $X \sim \operatorname{Poisson}(3)$, then $E(X)=3$ and $\operatorname{Var}(X)=3$.
Part (iii) /2
Since $Y \sim$ Exponential(10/3) from Part (i),

$$
\begin{aligned}
E(Y) & =\frac{1}{3 / 10}=\frac{10}{3} \\
\operatorname{Var}(Y) & =\frac{1}{(3 / 10)^{2}}=\frac{100}{9} .
\end{aligned}
$$

Part (iv) /4

We have for $y>x$,

$$
\begin{aligned}
P(Y \geq y) & =1-P(Y>y)=e^{-\lambda y} \\
P(Y \geq y \mid Y \geq x) & =\frac{P(Y \geq y \cap Y \geq x)}{P(Y \geq x)} \\
& =\frac{P(Y \geq y)}{P(Y \geq x)}, \quad \text { since the event }\{Y \geq y\} \text { implies }\{Y>x\} \\
& =e^{-\lambda(y-x)}
\end{aligned}
$$

Then

$$
\begin{aligned}
P(Y \geq 2) & =e^{-2 \lambda} \approx 0.5488 \\
P(Y \geq 6 \mid Y \geq 4) & =e^{-\lambda(6-4)}=e^{-2 \lambda} \approx 0.5488
\end{aligned}
$$

\Rightarrow Given that the first 911 call has not happened within the initial 4 minutes, the probability of the first call happening after 6 minutes (2 minutes later) is the same as the probability of the first call happening after the initial 2 minutes. This property is referred to as the memoryless property. The Exponential distribution is the only continuous probability distribution that has this property.

Question $4 \quad / 10$

Part (i) /3

By independence of X_{1} and X_{2},

$$
\begin{aligned}
P\left(1.0<X_{1}<2.5,2.2<X_{2}<3.5\right) & =P\left(1.0<X_{1}<2.5\right) P\left(2.2<X_{2}<3.5\right) \\
& =[F(2.5)-F(1.0)][F(3.5)-F(2.2)], \quad \text { with } F(x)=1-e^{-3 x} \\
& =\left[e^{-7.5}-e^{-3}\right]\left[e^{-6.6}-e^{-10.5}\right]
\end{aligned}
$$

By the mutual independence between X_{1}, X_{2}, and X_{3} :

$$
\begin{aligned}
P\left(1.0<X_{1}<2.5,2.2<X_{3}<3.5 \mid X_{2}<4\right) & =P\left(1.0<X_{1}<2.5,2.2<X_{3}<3.5\right) \\
& =P\left(1.0<X_{1}<2.5\right) P\left(2.2<X_{3}<3.5\right) \\
& =[F(2.5)-F(1.0)][F(3.5)-F(2.2)] \\
& \approx 0.0000656
\end{aligned}
$$

Part (ii) /1

Since $X_{1} \sim \operatorname{Exponential}(3), E\left(X_{1}\right)=1 / 3$ and $\operatorname{Var}\left(X_{1}\right)=1 / 9$.

Part (iii) /3

$$
\begin{aligned}
E\left(2 X_{1}+X_{2}-4 X_{3}\right) & =2 E\left(X_{1}\right)+E\left(X_{2}\right)-4 E\left(X_{3}\right) \\
& =2\left(\frac{1}{3}\right)+\left(\frac{1}{3}\right)-4\left(\frac{1}{3}\right) \\
& =-1 / 3
\end{aligned}
$$

$\operatorname{Var}\left(2 X_{1}+X_{2}-4 X_{3}\right)=4 \operatorname{Var}\left(X_{1}\right)+\operatorname{Var}\left(X_{2}\right)+16 \operatorname{Var}\left(X_{3}\right)$, since X_{1}, X_{2}, X_{3} are independent

$$
\begin{aligned}
& =4\left(\frac{1}{9}\right)+\left(\frac{1}{9}\right)+16\left(\frac{1}{9}\right) \\
& =21 / 9
\end{aligned}
$$

Part (iv) /3

Note that for random variables X and $Y, E(X)=E\{E(X \mid Y)\}$. Also, $\operatorname{Var}\left(X_{2}\right)=E\left(\left(X_{2}-1 / 3\right)^{2}\right)$ and $\operatorname{Var}\left(X_{3}\right)=E\left(\left(X_{3}-1 / 3\right)^{2}\right)$. Then

$$
\begin{aligned}
E\left(X_{1}\left(X_{2}-1 / 3\right)^{2}\right) & =E\left\{E\left(X_{1}\left(X_{2}-1 / 3\right)^{2} \mid X_{1}\right)\right\} \\
& =E\left\{X_{1} E\left(\left(X_{2}-1 / 3\right)^{2} \mid X_{1}\right)\right\} \\
& =E\left\{X_{1} E\left(\left(X_{2}-1 / 3\right)^{2}\right)\right\}, \text { since } X_{1} \text { and } X_{2} \text { are independent } \\
& =E\left(X_{1} / 9\right)=1 / 27
\end{aligned}
$$

$$
\begin{aligned}
E\left(X_{1}\left(X_{2}-1 / 3\right)^{2}\left(X_{3}-1 / 3\right)^{2}\right) & =E\left\{E\left(X_{1}\left(X_{2}-1 / 3\right)^{2}\left(X_{3}-1 / 3\right)^{2} \mid X_{1}, X_{2}\right)\right\} \\
& =E\left\{X_{1}\left(X_{2}-1 / 3\right)^{2} E\left(\left(X_{3}-1 / 3\right)^{2} \mid X_{1}, X_{2}\right)\right\} \\
& =E\left\{X_{1}\left(X_{2}-1 / 3\right)^{2} E\left(\left(X_{3}-1 / 3\right)^{2}\right)\right\}, \text { by the mutual independence } \\
& =\underbrace{E\left\{X_{1}\left(X_{2}-1 / 3\right)^{2}\right\}}_{1 / 27} / 9 \\
& =1 / 243 .
\end{aligned}
$$

Question $5 \quad / 10$

Part (i) /2

$$
\begin{aligned}
P(X<9.9) & =P\left(\frac{X-\mu}{\sigma}<\frac{9.9-10}{1}\right)=P(Z<-0.1) \approx 0.4602 \\
P(9.9<X<10.2) & =P(X<10.2)-P(X<9.9)=P(Z<0.2)-P(-0.1) \approx 0.1191
\end{aligned}
$$

Part (ii) /4

Since $X_{i} \sim N(10,1) \Rightarrow \bar{X}_{100} \sim N(10,1 / 100)$. Then

$$
\begin{aligned}
P\left(9.9<\bar{X}_{100}<10.2\right) & =P\left(\bar{X}_{100}<10.2\right)-P\left(\bar{X}_{100}<9.9\right) \\
& =P\left(Z<\frac{10.2-10}{\sqrt{1 / 100}}\right)-P\left(Z<\frac{9.9-10}{\sqrt{1 / 100}}\right) \\
& =P(Z<2)-P(Z<1) \\
& \approx 0.8186
\end{aligned}
$$

Part (ii) /4

We have $Y=\sum_{i=1}^{100} I\left(X_{i}<9.9\right)$, where

$$
I\left(X_{i}<x\right)= \begin{cases}1 & \text { if the } i \text { th mint is }<x \text { grams } \\ 0 & \text { otherwise }\end{cases}
$$

Then $Y \sim \operatorname{Binomial}(100, p)$, where $p \approx 0.4602$ from Part (\mathbf{i}), so that

$$
P(Y \leq 20)=\sum_{y=0}^{20} P(Y=y)
$$

Solution 1: Directly compute this probability

$$
P(Y \leq 20)=\sum_{y=0}^{20}\binom{100}{y} 0.4602^{y}(1-0.4602)^{100-y} \approx 5.1417 \times 10^{-8} \approx 0
$$

Solution 2: Use the Normal distribution as an approximation
Let $\mu=n p=46.02, \sigma^{2}=n p(1-p)=24.8416$

$$
\begin{aligned}
P(Y \leq 20) & \approx \sum_{y=0}^{20} P\left(\frac{(y-0.5)-46.02}{\sqrt{24.8416}}<Z<\frac{(y+0.5)-46.02}{\sqrt{24.8416}}\right) \\
& \approx P(Z<-5.12)-P(Z<-9.33) \\
& \approx 1.5277 \times 10^{-7} \\
& \approx 0
\end{aligned}
$$

