STAT-285 Homework 2 Solutions

§6.1 Exercises, Question 7 /6

For this question, let X_{i} denote the gas usage (in therms) for the i th house in January in a particular area. We are told (in Part B) that there are $N=10,000$ houses in our population, but we only observe the gas usage for $n=10$ houses. Table 1 presents the $n=10$ observations in our random sample.

Table 1: Observations X_{1}, \cdots, X_{10} for $\S 6.1$ Exercises, Question 7.

$$
\begin{array}{llllllllll}
X_{1} & X_{2} & X_{3} & X_{4} & X_{5} & X_{6} & X_{7} & X_{8} & X_{9} & X_{10} \\
103 & 156 & 118 & 89 & 125 & 147 & 122 & 109 & 138 & 99
\end{array}
$$

Part A /2

Since we cannot observe all N observations, we cannot compute μ. Instead, we can estimate μ based on our random sample. Since μ is the population mean, it is sensible to estimate it with the sample mean

$$
\hat{\mu}=\frac{1}{10} \sum_{i=1}^{10} X_{i}=120.6
$$

Other point estimates could be used however, but we use the sample mean because it is the minimum variance unbiased estimator of μ (see $\S 6.1$ of your textbook).

Part B /1

Here, $\mu=1 / N \sum_{i=1}^{N} X_{i}$ denote the average gas usage during January for all of the houses. Then with $N=10,000$

$$
\begin{aligned}
\mu & =\frac{1}{10,000} \underbrace{\sum_{i=1}^{10,000} X_{i}}_{\tau}=\frac{\tau}{10,000}, \\
\Rightarrow \tau & =10,000 \times \mu .
\end{aligned}
$$

Since we estimate μ with $\hat{\mu}$ in Part A, we can estimate τ with

$$
\hat{\tau}=10,000 \times \hat{\mu}=1,206,000
$$

Part C $\quad / 1$

Let

$$
Y_{i}=I\left(X_{i} \geq 100\right)=\left\{\begin{array}{ll}
1 & \text { if } X_{i} \geq 100 \\
0 & \text { if } X_{i}<100
\end{array} .\right.
$$

We can use our random sample to estimate the population proportion $p=E(Y)$ with the sample proportion

$$
\hat{p}=\frac{1}{10} \sum_{i=1}^{10} Y_{i}=\frac{8}{10}=0.8
$$

Note that the sample proportion is simply the sample mean of Y_{1}, \cdots, Y_{n}, so it it is the minimum variance unbiased estimator of p.

Part D /2

Let $F(x)$ denote the cumulative distribution function of X, so that the (population) median is

$$
M=F^{-1}(0.5),
$$

that is, $F(M)=0.5$. Since we do not know $F(x)$ we estimate it with the empirical cumulative distribution function

$$
\hat{F}(x)=\frac{1}{10} \sum_{i=1}^{10} I\left(X_{i} \leq x\right)
$$

Figure 1 illustrates $\hat{F}(x)$, in which we see $\hat{F}(x)=0.5$ for $x \in[118,122)$. Since we want a point estimate for M, we consider the midpoint of this interval

$$
\hat{M}=\frac{118+122}{2}=120 .
$$

§6.2 Exercises, Question $22 \quad / 14$

See Table 2 for the observations X_{1}, \cdots, X_{10} in our random sample.

Figure 1: Illustration of x vs. $\hat{F}(x)$, for $x \in[89,156]$. The red line corresponds to $\hat{F}(x)=0.5$, and the blue lines illustrate the interval in which $\hat{F}(\cdot)=0.5$

Table 2: Observations X_{1}, \cdots, X_{10} for $\S 6.2$ Exercises, Question 22.
$\begin{array}{llllllllll}X_{1} & X_{2} & X_{3} & X_{4} & X_{5} & X_{6} & X_{7} & X_{8} & X_{9} & X_{10}\end{array}$ $\begin{array}{llllllllll}0.92 & 0.79 & 0.90 & 0.65 & 0.86 & 0.47 & 0.73 & 0.97 & 0.94 & 0.77\end{array}$

Part A /6
We will obtain the method of moment estimator of θ by following the following steps:
Step 1: Obtain the population moment, $E(X)$:

$$
\begin{aligned}
E(X) & =\int_{0}^{1} x f(x ; \theta) d x \\
& =\int_{0}^{1}(\theta+1) x^{\theta+1} \\
& =\left.\left(\frac{\theta+1}{\theta+2}\right) x^{\theta+2}\right|_{x=0} ^{x=1} \\
& =\frac{\theta+1}{\theta+2},
\end{aligned}
$$

since $x^{\theta+2}=0$ for all $\theta>-1$.

Step 2: Equate $E(X)$ to the sample moment. That is,

$$
\bar{X}_{n}=\frac{\theta+1}{\theta+2},
$$

where \bar{X}_{n} denotes the sample mean based on n observations.
Step 3: Solve for θ from Step 2

$$
\begin{aligned}
(\theta+2) \bar{X}_{n} & =\theta+1 \\
& =\cdots \\
\hat{\theta}_{M o M} & =\frac{1-2 \bar{X}_{n}}{\bar{X}_{n}-1} .
\end{aligned}
$$

Step 4: Compute the method of moment estimate of θ

$$
\begin{aligned}
\bar{X}_{10} & =\frac{1}{10} \sum_{i=1}^{10} X_{i}=\frac{8}{10}=0.8, \\
\Rightarrow \hat{\theta}_{M o M} & =\frac{1-2(0.8)}{(0.8)-1}=3
\end{aligned}
$$

Part B /8

We will obtain the maximum likelihood estimator of θ by following the following steps:

Step 1: Write down the likelihood function

$$
\begin{aligned}
L\left(\theta \mid X_{1}, \cdots, X_{n}\right) & =f\left(X_{1}, \cdots, X_{n} ; \theta\right) \\
& =\prod_{i=1}^{n} f\left(X_{i} ; \theta\right) \quad \text { (by independence) } \\
& =(\theta+1)^{n} \prod_{i=1}^{n} X_{i}^{\theta}
\end{aligned}
$$

Step 2: Write down the log-likelihood function

$$
\begin{aligned}
\ell\left(\theta \mid X_{1}, \cdots, X_{n}\right) & =\log L\left(\theta \mid X_{1}, \cdots, X_{n}\right) \\
& =n \log (\theta+1)+\theta \sum_{i=1}^{n} \log X_{i} .
\end{aligned}
$$

Figure 2 illustrates $\ell\left(\theta \mid X_{1}, \cdots, X_{10}\right)$ vs. θ, in which we see the maximum of $\ell\left(\theta \mid X_{1}, \cdots, X_{10}\right)$ corresponds to $\theta \approx 3.1161$. We will proceed to (analytically) find the value of θ that maximizes $\ell\left(\theta \mid X_{1}, \cdots, X_{n}\right)$.

Step 3: Differentiate $\ell\left(\theta \mid X_{1}, \cdots, X_{n}\right)$ with respect to θ :

$$
\frac{d}{d \theta} \ell\left(\theta \mid X_{1}, \cdots, X_{n}\right)=\frac{n}{\theta+1}+\sum_{i=1}^{n} \log X_{i}
$$

Step 4: Equate $d \ell\left(\theta \mid X_{1}, \cdots, X_{n}\right) / / d \theta$ to 0 , and solve for θ :

$$
\begin{gathered}
\frac{n}{\theta+1}+\sum_{i=1}^{n} \log X_{i}=0 \\
\cdots \\
\hat{\theta}_{M L E}=\frac{-\left(n+\sum_{i=1}^{n} \log X_{i}\right)}{\sum_{i=1}^{n} \log X_{i}}
\end{gathered}
$$

Step 5: Compute the maximum likelihood estimate of θ.

$$
\begin{aligned}
& \sum_{i=1}^{10} \log X_{i} \approx-2.4295 \\
& \quad \Rightarrow \hat{\theta}_{M L E} \approx \frac{10-2.4295}{2.4295}=3.1161
\end{aligned}
$$

We can see in Figure 2 that $\hat{\theta}_{M L E}$ is indeed the maximum of $\ell\left(\theta \mid X_{1}, \cdots, X_{10}\right)$.

Figure 2: Illustration of $\ell\left(\theta \mid X_{1}, \cdots, X_{10}\right)$ vs. θ. We can see that $\hat{\theta}_{M L E}=3.1161$ is the maximum of $\ell\left(\theta \mid X_{1}, \cdots, X_{10}\right)$.

- Step 5: Verify that $d^{2} \ell\left(\theta \mid X_{1}, \cdots, X_{n}\right) / d \theta^{2}<0$, evaluated at $\theta=\hat{\theta}_{M L E}$

$$
\begin{aligned}
\frac{d^{2}}{d \theta^{2}} \ell\left(\theta \mid X_{1}, \cdots, X_{n}\right) & =\frac{d}{d \theta}\left(\frac{n}{\theta+1} \sum_{i=1}^{n} \log X_{i}\right) \\
& =\frac{-n}{(\theta+1)^{2}}<0
\end{aligned}
$$

for all $\theta>-1$.

