STAT-285 Homework 2 Solutions

§6.1 Exercises, Question 7 /6

For this question, let X_i denote the gas usage (in therms) for the *i*th house in January in a particular area. We are told (in **Part B**) that there are N = 10,000 houses in our population, but we only observe the gas usage for n = 10 houses. Table 1 presents the n = 10 observations in our random sample.

Table 1: Observations X_1, \dots, X_{10} for §6.1 Exercises, Question 7.

$$X_1$$
 X_2 X_3 X_4 X_5 X_6 X_7 X_8 X_9 X_{10} 103 156 118 89 125 147 122 109 138 99

Part A /2

Since we cannot observe all N observations, we cannot compute μ . Instead, we can estimate μ based on our random sample. Since μ is the population mean, it is sensible to estimate it with the *sample mean*

$$\hat{\mu} = \frac{1}{10} \sum_{i=1}^{10} X_i = 120.6$$

Other point estimates could be used however, but we use the sample mean because it is the minimum variance unbiased estimator of μ (see §6.1 of your textbook).

Part B /1

Here, $\mu=1/N\sum_{i=1}^N X_i$ denote the average gas usage during January for all of the houses. Then with N=10,000

$$\mu = \frac{1}{10,000} \underbrace{\sum_{i=1}^{10,000} X_i}_{\tau} = \frac{\tau}{10,000},$$

$$\Rightarrow \tau = 10,000 \times \mu.$$

Since we estimate μ with $\hat{\mu}$ in **Part A**, we can estimate τ with

$$\hat{\tau} = 10,000 \times \hat{\mu} = 1,206,000.$$

Part C /1

Let

$$Y_i = I(X_i \ge 100) = \begin{cases} 1 & \text{if } X_i \ge 100 \\ 0 & \text{if } X_i < 100 \end{cases}.$$

We can use our random sample to estimate the population proportion p = E(Y) with the sample proportion

$$\hat{p} = \frac{1}{10} \sum_{i=1}^{10} Y_i = \frac{8}{10} = 0.8$$

Note that the sample proportion is simply the sample mean of Y_1, \dots, Y_n , so it it is the minimum variance unbiased estimator of p.

Part D /2

Let F(x) denote the cumulative distribution function of X, so that the (population) median is

$$M = F^{-1}(0.5),$$

that is, F(M) = 0.5. Since we do not know F(x) we estimate it with the *empirical cumulative* distribution function

$$\hat{F}(x) = \frac{1}{10} \sum_{i=1}^{10} I(X_i \le x).$$

Figure 1 illustrates $\hat{F}(x)$, in which we see $\hat{F}(x) = 0.5$ for $x \in [118, 122)$. Since we want a point estimate for M, we consider the midpoint of this interval

$$\hat{M} = \frac{118 + 122}{2} = 120.$$

$\S 6.2 \; \text{Exercises}, \; \text{Question} \; 22$ /14

See Table 2 for the observations X_1, \dots, X_{10} in our random sample.

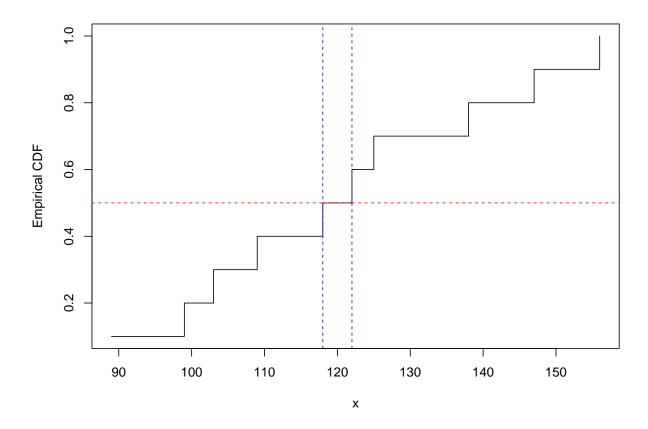


Figure 1: Illustration of x vs. $\hat{F}(x)$, for $x \in [89, 156]$. The red line corresponds to $\hat{F}(x) = 0.5$, and the blue lines illustrate the interval in which $\hat{F}(\cdot) = 0.5$

Table 2: Observations X_1, \dots, X_{10} for §6.2 Exercises, Question 22.

Part A /6

We will obtain the method of moment estimator of θ by following the following steps:

Step 1: Obtain the population moment, E(X):

$$\begin{split} E(X) &= \int_0^1 x f(x;\theta) dx \\ &= \int_0^1 (\theta+1) x^{\theta+1} \\ &= \left. \left(\frac{\theta+1}{\theta+2} \right) x^{\theta+2} \right|_{x=0}^{x=1} \\ &= \frac{\theta+1}{\theta+2}, \end{split}$$

since $x^{\theta+2} = 0$ for all $\theta > -1$.

Step 2: Equate E(X) to the sample moment. That is,

$$\bar{X}_n = \frac{\theta + 1}{\theta + 2},$$

where \bar{X}_n denotes the sample mean based on n observations.

Step 3: Solve for θ from **Step 2**

$$(\theta + 2)\bar{X}_n = \theta + 1$$

$$= \cdots$$

$$\hat{\theta}_{MoM} = \frac{1 - 2\bar{X}_n}{\bar{X}_n - 1}.$$

Step 4: Compute the method of moment estimate of θ

$$\bar{X}_{10} = \frac{1}{10} \sum_{i=1}^{10} X_i = \frac{8}{10} = 0.8,$$

$$\Rightarrow \hat{\theta}_{MoM} = \frac{1 - 2(0.8)}{(0.8) - 1} = 3$$

Part B /8

We will obtain the maximum likelihood estimator of θ by following the following steps:

Step 1: Write down the likelihood function

$$L(\theta|X_1, \dots, X_n) = f(X_1, \dots, X_n; \theta)$$

$$= \prod_{i=1}^n f(X_i; \theta) \quad \text{(by independence)}$$

$$= (\theta + 1)^n \prod_{i=1}^n X_i^{\theta}.$$

Step 2: Write down the log-likelihood function

$$\ell(\theta|X_1,\dots,X_n) = \log L(\theta|X_1,\dots,X_n)$$
$$= n\log(\theta+1) + \theta \sum_{i=1}^n \log X_i.$$

Figure 2 illustrates $\ell(\theta|X_1, \dots, X_{10})$ vs. θ , in which we see the maximum of $\ell(\theta|X_1, \dots, X_{10})$ corresponds to $\theta \approx 3.1161$. We will proceed to (analytically) find the value of θ that maximizes $\ell(\theta|X_1, \dots, X_n)$.

Step 3: Differentiate $\ell(\theta|X_1,\dots,X_n)$ with respect to θ :

$$\frac{d}{d\theta}\ell(\theta|X_1,\cdots,X_n) = \frac{n}{\theta+1} + \sum_{i=1}^n \log X_i.$$

Step 4: Equate $d\ell(\theta|X_1,\dots,X_n)//d\theta$ to 0, and solve for θ :

$$\frac{n}{\theta+1} + \sum_{i=1}^{n} \log X_i = 0$$

. . .

$$\hat{\theta}_{MLE} = \frac{-\left(n + \sum_{i=1}^{n} \log X_i\right)}{\sum_{i=1}^{n} \log X_i}$$

Step 5: Compute the maximum likelihood estimate of θ .

$$\sum_{i=1}^{10} \log X_i \approx -2.4295$$

$$\Rightarrow \hat{\theta}_{MLE} \approx \frac{10 - 2.4295}{2.4295} = 3.1161$$

We can see in Figure 2 that $\hat{\theta}_{MLE}$ is indeed the maximum of $\ell(\theta|X_1,\cdots,X_{10})$.

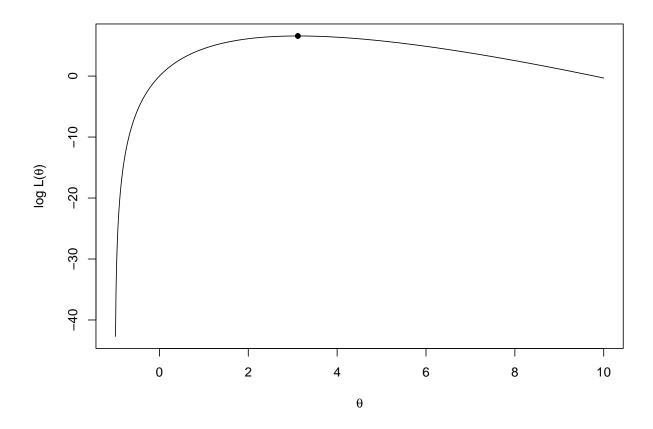


Figure 2: Illustration of $\ell(\theta|X_1, \dots, X_{10})$ vs. θ . We can see that $\hat{\theta}_{MLE} = 3.1161$ is the maximum of $\ell(\theta|X_1, \dots, X_{10})$.

• Step 5: Verify that $d^2\ell(\theta|X_1,\dots,X_n)/d\theta^2 < 0$, evaluated at $\theta = \hat{\theta}_{MLE}$

$$\frac{d^2}{d\theta^2}\ell(\theta|X_1,\dots,X_n) = \frac{d}{d\theta}\left(\frac{n}{\theta+1}\sum_{i=1}^n \log X_i\right)$$
$$= \frac{-n}{(\theta+1)^2} < 0,$$

for all $\theta > -1$.