STAT-285 Homework 4 Solutions

Section 7.4 Question $44 \quad / 6$

With $n=9, \chi_{0.025}^{2}(n-1) \approx 17.5346$ and $\chi_{0.975}^{2}(n-1) \approx 2.1797$, and we are given $S=2.81$

A 95% confidence interval for σ^{2} is (see lecture notes Week3Bb.pdf):

$$
\begin{aligned}
\left(\frac{(n-1) S^{2}}{\chi_{0.025}^{2}(n-1)}, \frac{(n-1) S^{2}}{\chi_{0.975}^{2}(n-1)}\right) & \approx\left(\frac{8 \times 2.81^{2}}{17.5346}, \frac{8 \times 2.81^{2}}{2.1797}\right) \\
& \approx(3.6025,28.9805)
\end{aligned}
$$

Similarly, a 95% CI for σ is

$$
\begin{aligned}
\left(\sqrt{\frac{(n-1) S^{2}}{\chi_{0.025}^{2}(n-1)}}, \sqrt{\frac{(n-1) S^{2}}{\chi_{0.975}^{2}(n-1)}}\right) & \approx\left(\sqrt{\frac{8 \times 2.81^{2}}{17.5346}}, \sqrt{\frac{8 \times 2.81^{2}}{2.1797}}\right) \\
& \approx(1.8980,5.3834)
\end{aligned}
$$

Section 8.1 Question $12 \quad / 14$

Part A $/ 2$
The null hypothesis $\left(H_{0}\right)$ and alternative hypothesis $\left(H_{a}\right)$ are

$$
H_{0}: \mu=1300 \text { vs. } H_{a}: \mu>1300
$$

Part B /5

Under the null hypothesis $H_{0}: \mu=\mu_{0}$,

$$
Z=\frac{\bar{x}-\mu_{0}}{\sigma / \sqrt{n}} \sim N(0,1)
$$

Given that $\bar{x}=1340, \sigma=60$, and $n=10$, our test statistic is

$$
\begin{aligned}
Z_{\text {obs }} & =\frac{1340-1300}{60 / \sqrt{10}} \\
& \approx 2.11
\end{aligned}
$$

There are two ways we can conduct the hypothesis test of interest:
Method 1: Assess if $Z_{\text {obs }}$ is inside the rejection region
The rejection region for a pre-determined α is

$$
\mathcal{R}_{\alpha}=\left\{z: z>z_{\alpha}\right\} .
$$

By specifying $\alpha=0.01$

$$
\mathcal{R}_{0.01}=\left\{z: z>z_{0.01}\right\} \approx\{z: z>2.33\} .
$$

Since $Z_{\text {obs }} \notin \mathcal{R}_{0.01}$, we fail to reject H_{0} with $\alpha=0.01$

Method 2: Compute the p-value

The p-value is

$$
P\left(Z \geq Z_{o b s}\right)=P(Z \geq 2.11)=0.0174
$$

Since $0.0174>0.01$, we fail to reject H_{0} with $\alpha=0.01$

Part C $\quad / 7$

Note that when $\mu=1350$,

$$
Z_{0}=\frac{\bar{x}-\mu}{\sigma / \sqrt{n}} \sim N(0,1)
$$

The probability of making a type II error when $\mu=1350$ with $\alpha=0.01$ is

$$
\begin{aligned}
\beta & =P\left(Z \notin \mathcal{R}_{0.01} \mid \mu=1350\right) \\
& =P\left(\left.\frac{\bar{X}-\mu_{0}}{\sigma / \sqrt{n}}<2.33 \right\rvert\, \mu=1350\right) \\
& =P\left(\left.\bar{X}<\mu_{0}+2.33 \times \frac{\sigma}{\sqrt{n}} \right\rvert\, \mu=1350\right) \\
& =P\left(\left.\bar{X}<1300+2.33 \times \frac{60}{\sqrt{10}} \right\rvert\, \mu=1350\right) \\
& =P(\bar{X}<1344.209 \mid \mu=1350)
\end{aligned}
$$

$$
\begin{aligned}
& =P\left(\left.\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}<\frac{1344.209-\mu}{\sigma / \sqrt{n}} \right\rvert\, \mu=1350\right) \\
& =\Phi(-0.3052) \\
& =0.3801
\end{aligned}
$$

