STAT-285 Homework 6 Solutions

Section 10.1 Question $5 \quad / 7$

Study Objective: Determine if there exists a difference between the mean modulus of elasticity for lumber of three different grades.

Formulation: Let

- $X_{i j}$ denote the j th measurement for the i th grade, with $i=1,2,3$, and $j=1, \cdots, 10$ (ie $I=3$ and $J=10$).
We assume that $X_{i j} \sim N\left(\mu_{i}, \sigma^{2}\right)$. For this question, we are given
- $\bar{X}_{1 .}=1.63, \bar{X}_{2}=1.56$, and $\bar{X}_{3 .}=1.42$, so that

$$
\bar{X}_{. .}=\frac{1}{3}\left(\bar{X}_{1 .}+\bar{X}_{2 .}+\bar{X}_{3 .}\right)=1.54
$$

- $S_{1}=0.27, S_{2}=0.24$, and $S_{3}=0.26$

Hypothesis Test: $H_{0}: \mu_{1}=\mu_{2}=\mu_{3}$ vs. H_{a} : At least two of the μ_{i} 's are different.

Test Statistic:

$$
\frac{M S T r}{M S E} \sim F(2,27)
$$

Here,

$$
\begin{aligned}
M S T r & =\frac{10}{2}\left[(1.63-1.54)^{2}+(1.56-1.54)^{2}+(1.42-1.54)^{2}\right]=0.1145 \\
M S E & =\frac{1}{3}\left(0.27^{2}+0.24^{2}+0.26^{2}\right)=0.06603 .
\end{aligned}
$$

Therefore,

$$
F_{o b s}=\frac{M S T r}{M S E}=\frac{0.1145}{0.06603}=1.73
$$

Method 1 - p-value: $P_{H_{0}}\left(F>F_{\text {obs }}\right)=0.1963$, where $F \sim F(2,27)$.
Since $0.01<0.1963$, we fail to reject H_{0}.
Method 2 - Rejection Region:

$$
\begin{aligned}
\mathcal{R}_{0.01} & =\left\{f: f>f_{0.01}(2,27)\right\} \\
& =\{f: f>5.49\} .
\end{aligned}
$$

Since $F_{\text {obs }} \notin \mathcal{R}_{0.01}$, we fail to reject H_{0}.

Section 10.1 Question $7 \quad / 7$

Study Objective: Determine if there exists a difference between six different low-permeability concrete bridge deck mixtures.

Formulation: Let

- $X_{i j}$ denote the j th measurement on concrete cylinders for the i th mixture, with $i=$ $1, \cdots, 6$, and $j=1, \cdots, 26$ (ie $I=6$ and $J=26$).

We assume that $X_{i j} \sim N\left(\mu_{i}, \sigma^{2}\right)$.
Hypothesis Test: $H_{0}: \mu_{1}=\cdots=\mu_{6}$ vs. H_{a} : At least two of the μ_{i} 's are different.
Test Statistic:

$$
\frac{M S T r}{M S E} \sim F(I-1, I(J-1))
$$

We are asked to fill out the following ANOVA table:

Source	df	Sum of Squares	Mean Square	F
Mixture	$I-1$	$S S T r$	$M S T r$	$F_{\text {obs }}$
Error	$I(J-1)$	$S S E$	13.929	
Total	$I J-1$	5664.415		

Here, the

- degrees of freedom for treatment is $I-1=5$
- total degrees of freedom is $I J-1=155$
- degrees of freedom for error is $I(J-1)=155-5=150$.
- $M S E=\frac{S S E}{I(J-1)}=13.929$
$\Rightarrow S S E=M S E \times I(J-1)=13.929 \times 150=2089.35$
- $S S T=S S E+S S T r$
$\Rightarrow S T r=S S T-S S E=5664.415-2089.35=3575.065$
- $M S T r=\frac{S S T r}{I-1}=\frac{3575.065}{5}=715.013$
- $F_{\text {obs }}=\frac{M S T r}{M S E}=\frac{715.013}{13.929}=51.33$

Method 1 - p-value: $P_{H_{0}}\left(F>F_{\text {obs }}\right) \approx 8.3 \times 10^{-31}$, where $F \sim F(5,150)$.
Taking $\alpha=0.05$, we reject H_{0} since $0.05>8.3 \times 10^{-31}$.

Method 2 - Rejection Region: Taking $\alpha=0.05$:

$$
\begin{aligned}
\mathcal{R}_{0.05} & =\left\{f: f>f_{0.05}(5,150)\right\} \\
& =\{f: f>2.27\} .
\end{aligned}
$$

Since $F_{\text {obs }} \in \mathcal{R}_{0.05}$, we reject H_{0}.

Section 10.1 Question $10 / 16$

Recall that we let $X_{i j}$ denote the j th measurement for the i th group, with $i=1, \cdots, I$, and $j=1, \cdots, J$. We assume that $X_{i j} \sim N\left(\mu_{i}, \sigma^{2}\right)$.

Estimator for μ_{i} : We estimate μ_{i} with $\bar{X}_{i .}=\sum_{j=1}^{J} X_{i j} / J$. Note that

$$
\begin{aligned}
E\left(\bar{X}_{i .}\right) & =E\left(\frac{1}{J} \sum_{j=1}^{J} X_{i j}\right)=\frac{1}{J} \sum_{j=1}^{J} E\left(X_{i j}\right)=\mu_{i} \\
\operatorname{Var}\left(\bar{X}_{i .}\right) & =\operatorname{Var}\left(\frac{1}{J} \sum_{j=1}^{J} X_{i j}\right) \underbrace{=}_{\text {by independence }} \frac{1}{J^{2}} \sum_{j=1}^{J} \operatorname{Var}\left(X_{i j}\right)=\frac{\sigma^{2}}{J} .
\end{aligned}
$$

\Rightarrow We will use this in Part B.
Part A /2
By definition, we have

$$
\begin{aligned}
\bar{X}_{. .} & =\frac{1}{I J} \sum_{i=1}^{I} \sum_{j=1}^{J} X_{i j} \\
& =\frac{1}{I} \sum_{i=1}^{I}\left(\frac{1}{J} \sum_{j=1}^{J} X_{i j}\right) \\
& =\frac{1}{I} \sum_{i=1}^{I} \bar{X}_{i .} .
\end{aligned}
$$

Therefore,

$$
E\left(\bar{X}_{. .}\right)=E\left(\frac{1}{I} \sum_{i=1}^{I} \bar{X}_{i .}\right)=\frac{1}{I} \sum_{i=1}^{I} E\left(\bar{X}_{i .}\right)=\frac{1}{I} \sum_{i=1}^{I} \mu_{i} \equiv \mu .
$$

That is, $\bar{X}_{. .}$is an unbiased estimator for μ.
Part B /4
Recall for a random variable X :

$$
E\left(X^{2}\right)=\operatorname{Var}(X)+E(X)^{2}
$$

Therefore,

$$
E\left(\bar{X}_{i .}^{2}\right)=\operatorname{Var}\left(\bar{X}_{i .}\right)+E\left(\bar{X}_{i .}\right)^{2}=\frac{\sigma^{2}}{J}+\mu_{i}^{2}
$$

Part C $/ 3$
We see that

$$
\begin{aligned}
E\left(\bar{X}_{. .}^{2}\right) & =\operatorname{Var}\left(\bar{X}_{. .}\right)+E\left(\bar{X}_{. .}\right)^{2} \\
& =\operatorname{Var}\left(\frac{1}{I} \sum_{i=1}^{I} \bar{X}_{i .}\right)+\mu^{2} \\
& =\frac{1}{I^{2}} \sum_{i=1}^{I} \operatorname{Var}\left(\bar{X}_{i .}\right)+\mu^{2}, \quad \text { by independence } \\
& =\frac{1}{I^{2}} \sum_{i=1}^{I} \frac{\sigma^{2}}{J}+\mu^{2} \\
& =\frac{\sigma^{2}}{I J}+\mu^{2}
\end{aligned}
$$

Part D /4

Since $\bar{X}_{i .}=X_{i .} / J$ where $X_{i .}=\sum_{j=1}^{J} X_{i j}$, then $\bar{X}_{i .}^{2}=X_{i .}^{2} / J^{2}$, and

$$
\begin{equation*}
J \sum_{i=1}^{I} \bar{X}_{i .}^{2}=\frac{1}{J} \sum_{i=1}^{I} X_{i .}^{2} \tag{1}
\end{equation*}
$$

Also, since $\bar{X}_{. .}=X_{. .} / I J$ where $X_{. .}=\sum_{i=1}^{I} \sum_{j=1}^{J} X_{i j}$, then $X_{. .}=I J \bar{X}_{. .}$, and

$$
\begin{equation*}
X_{. .}^{2}=(I J)^{2} \bar{X}_{. .}^{2} \tag{2}
\end{equation*}
$$

Putting these two results together, we can express $S S T r$ as

$$
\begin{aligned}
S S T r & =\frac{1}{J} \sum_{i=1}^{I} X_{i .}^{2}-\frac{1}{I J} X_{. .}^{2} \quad \text { (see Page } 416 \text { in your textbook) } \\
& =\underbrace{J \sum_{i=1}^{I} \bar{X}_{i .}^{2}}_{\text {from }(1)}-\underbrace{I J \bar{X}_{2}^{2}}_{\text {from }(2)},
\end{aligned}
$$

so that

$$
\begin{aligned}
E(S S T r) & =J \sum_{i=1}^{I} E\left(\bar{X}_{i .}^{2}\right)-I J E\left(\bar{X}_{. .}^{2}\right) \\
& =J \sum_{i=1}^{I}(\underbrace{\frac{\sigma^{2}}{J}+\mu_{i}^{2}}_{\text {from part (b) }})-I J(\underbrace{\frac{\sigma^{2}}{I J}+\mu^{2}}_{\text {from part (c) }}) \\
& =I \sigma^{2}+J \sum_{i=1}^{I} \mu_{i}^{2}-\sigma^{2}-I J \mu^{2} \\
& =(I-1) \sigma^{2}+J\left(\sum_{i=1}^{I} \mu_{i}^{2}-I \mu^{2}\right) \\
& =(I-1) \sigma^{2}+J\left(\sum_{i=1}^{I} \mu_{i}^{2}-2 I \mu^{2}+I \mu^{2}\right) \quad \text { Note: } I \mu=\sum_{i=1}^{I} \mu_{i} \\
& =(I-1) \sigma^{2}+J \sum_{i=1}^{I}\left(\mu_{i}-\mu\right)^{2} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
E(M S T r) & =E\left(\frac{S S T r}{I-1}\right) \\
& =\frac{1}{I-1}\left((I-1) \sigma^{2}+J \sum_{i=1}^{I}\left(\mu_{i}-\mu\right)^{2}\right) \\
& =\sigma^{2}+\frac{J}{I-1} \sum_{i=1}^{I}\left(\mu_{i}-\mu\right)^{2}
\end{aligned}
$$

as desired.

Part E /3

Recall that we are conducting the following hypothesis test:

$$
H_{0}: \mu_{1}=\cdots=\mu_{I} \quad \text { vs. } H_{a}: \text { At least two of the } \mu_{i} \text { 's are distinct. }
$$

If H_{0} is true, then $\mu_{1}=\cdots=\mu_{I} \equiv \mu^{*}$, and

$$
\mu=\frac{1}{I} \sum_{i=1}^{I} \mu_{i}=\frac{1}{I} \sum_{i=1}^{I} \mu^{*}=\mu^{*} .
$$

We see that

$$
\sum_{i=1}^{I}\left(\mu_{i}-\mu\right)^{2}=\sum_{i=1}^{I}\left(\mu^{*}-\mu^{*}\right)^{2}=0
$$

and based on our work from Part D:

$$
E(M S T r)=\sigma^{2}+\frac{J}{I-1} \sum_{i=1}^{I}\left(\mu_{i}-\mu\right)^{2},=\sigma^{2} .
$$

That is, $M S T r$ is an unbiased estimator for σ^{2}. However, if H_{0} is false (i.e. H_{a} is true), we see that

$$
E(M S T r)>\sigma^{2}
$$

since

$$
\frac{J}{I-1} \sum_{i=1}^{I}\left(\mu_{i}-\mu\right)^{2}>0
$$

BONUS Section 10.2 Question 15

Study Objective: Determine which of the six different concrete mixtures differ with respect to their resistivity.

Formulation: Let

- $X_{i j}$ denote the j th measurement for the i th concrete mixture, with $i=1, \cdots, 6$, and $j=1, \cdots, 26$ (ie $I=6$ and $J=26$).

We assume that $X_{i j} \sim N\left(\mu_{i}, \sigma^{2}\right)$, and we are given that

$$
\begin{gathered}
\bar{X}_{1 .}=14.18, \bar{X}_{2 .}=17.94, \bar{X}_{3 .}=18 \\
\bar{X}_{4 .}=18, \bar{X}_{5 .}=25.74, \bar{X}_{6 .}=27.67
\end{gathered}
$$

Method: Apply Tukey's method to identify significant differences.

Using $\alpha=0.05$, we find that $Q_{0.05,6,150}=4.08$
(in R: qtukey $(0.95$, nmeans $=6, \mathrm{df}=150)$). Since the question also gives $M S E=$ 13.929, we have

$$
W=Q_{0.05,6,150} \sqrt{\frac{M S E}{J}}=4.08 \sqrt{\frac{13.929}{26}}=2.9863
$$

Table 1 presents the sample mean differences between the six concrete mixtures. Note that if $\bar{X}_{j .}-\bar{X}_{i .}<W$, this implies that zero lies in the corresponding confidence interval. That is, using an underscoring pattern, we summarize our findings as

$$
\begin{array}{ccccccc}
i & 1 & 2 & 3 & 4 & 5 & 6 \\
\bar{X}_{i .} & 14.18 & 17.94 & 18 & 18 & & 25.74 \\
\cline { 3 - 4 } & & 27.67 \\
\hline
\end{array}
$$

To interpret this, we see that there is no significant differences between

- concrete mixture 2 from concrete mixtures 3 or 4
- concrete mixture 5 from concrete mixture 6

Table 1: $\bar{X}_{j .}-\bar{X}_{i .}$ for $j>i$. The bold-faced elements correspond to the values less than W.

$i \backslash j$	1	2	3	4	5	6
1		3.76	3.82	3.82	11.56	13.49
2			$\mathbf{0 . 0 6}$	$\mathbf{0 . 0 6}$	7.8	9.73
3				$\mathbf{0}$	7.74	9.67
4					7.74	9.67
5						$\mathbf{1 . 9 3}$
6						

