STAT-285 Homework 7 Solutions

Section 10.2 Question $15 \quad / 4$

Study Objective: Determine which of the six different concrete mixtures have differ with respect to their resistivity.

Formulation: Let

- $X_{i j}$ denote the j th measurement for the i th concrete mixture, with $i=1, \cdots, 6$, and $j=1, \cdots, 26$ (ie $I=6$ and $J=26$).

We assume that $X_{i j} \sim N\left(\mu_{i}, \sigma^{2}\right)$, and we are given that

$$
\begin{gathered}
\bar{X}_{1 .}=14.18, \bar{X}_{2 .}=17.94, \bar{X}_{3 .}=18, \\
\bar{X}_{4 .}=18, \bar{X}_{5 .}=25.74, \bar{X}_{6 .}=27.67
\end{gathered}
$$

Method: Apply Tukey's method to identify significant differences.

Using $\alpha=0.05$, we find that $Q_{0.05,6,150}=4.08$
(in R: qtukey $(0.95$, nmeans $=6, \mathrm{df}=150)$). Since the question also gives $M S E=$ 13.929, we have

$$
W=Q_{0.05,6,150} \sqrt{\frac{M S E}{J}}=4.08 \sqrt{\frac{13.929}{26}}=2.9863
$$

Table 1 presents the sample mean differences between the six concrete mixtures. Note that if $\bar{X}_{j .}-\bar{X}_{i .}<W$, this implies that zero lies in the corresponding confidence interval. That is, using an underscoring pattern, we summarize our findings as

i	1	2	3	4	5	6
$\bar{X}_{i .}$	14.18	17.94	18	18		25.74
			27.67			

To interpret this, we see that there is no significant differences between

- concrete mixture 2 from concrete mixtures 3 or 4
- concrete mixture 5 from concrete mixture 6

Table 1: $\bar{X}_{j .}-\bar{X}_{i \text {. for }} j>i$. The bold-faced elements correspond to the values less than W.

$i \backslash j$	1	2	3	4	5	6
1		3.76	3.82	3.82	11.56	13.49
2			$\mathbf{0 . 0 6}$	$\mathbf{0 . 0 6}$	7.8	9.73
3				$\mathbf{0}$	7.74	9.67
4					7.74	9.67
5						$\mathbf{1 . 9 3}$
6						

Section 11.1 Question $4 \quad / 14$

Study Objective: Determine if there exists a difference between the mean coverage of light-bulb interior latex paint between brands of paint and rollers.

Formulation: Let

- $X_{i j}$ denote the observation for the i th brand of paint and j th roller brand, with $i=$ $1,2,3,4$, and $j=1,2,3$ (ie $I=4$ and $J=3$).

We assume that $X_{i j} \sim N\left(\mu_{i j}, \sigma^{2}\right)$, where $\mu_{i j}=\mu+\alpha_{i}+\beta_{j}$, with $\sum_{i=1}^{4} \alpha_{i}=0$ and $\sum_{j=1}^{3} \beta_{j}=0$. We see that

- $\bar{X}_{. .}=\sum_{i=1}^{4} \sum_{j=1}^{3} X_{i j} / 12=44.75$
- $\bar{X}_{i .}=\sum_{j=1}^{3} X_{i j} / 3$

$$
\bar{X}_{1 .}=50.33, \bar{X}_{2 .}=45.67, \bar{X}_{3 .}=41.67, \bar{X}_{4 .}=41.33
$$

$$
\bar{X}_{. j}=\sum_{i=1}^{4} X_{i j} / 4
$$

$$
\bar{X}_{.1}=45.75, \bar{X}_{.2}=42.25, \bar{X}_{.3}=46.25
$$

Part A /6

We are to fill out the following ANOVA table:

- degrees of freedom for paint brand is $I-1=3$
- degrees of freedom for roller brand is $J-1=2$
- degrees of freedom for error is $(I-1)(J-1)=6$

Source	df	Sum of Squares	Mean Square	F
Paint Brand (Factor A)	$I-1$	$S S A$	$M S A$	F_{A}
Roller Brand (Factor B)	$J-1$	$S S B$	$M S B$	F_{B}
Error	$(I-1)(J-1)$	$S S E$	$M S E$	
Total	$I J-1$	$S S T$		

- total degrees of freedom is $I J-1=11$
- $S S T=\sum_{i=1}^{4} \sum_{j=1}^{3}\left(X_{i j}-\bar{X}_{. .}\right)^{2}=238.25$
- $S S A=J \sum_{i=1}^{4}\left(\bar{X}_{i .}-\bar{X}_{. .}\right)^{2}=159.5833$
- $S S B=I \sum_{j=1}^{3}\left(\bar{X}_{. j}-\bar{X}_{. .}\right)^{2}=38$
- $S S E=S S T-S S A-S S B=40.6667$
- $M S A=S S A /(I-1)=53.1944$
- $M S B=S S B /(J-1)=19$
- $M S E=S S E /((I-1)(J-1))=6.7778$
- $F_{A}=M S A / M S E=7.85$
- $F_{B}=M S B / M S E=2.80$

Part B /2

Hypothesis Test: $H_{0 A}: \alpha_{1}=\alpha_{2}=\alpha_{3}=\alpha_{4}=0$ vs. $H_{a A}$: At least one $\alpha_{i} \neq 0$

Test Statistic:

$$
F_{A}=\frac{M S A}{M S E} \sim F(3,6)
$$

From Part A, we have $F_{A, o b s}=7.85$

Method 1 - p-value: $P_{H_{0}}\left(F>F_{A, \text { obs }}\right)=0.0169$, where $F \sim F(3,6)$.
Since $0.0169<0.05$, we reject $H_{0 A}$.

Method 2 - Rejection Region:

$$
\begin{aligned}
\mathcal{R}_{A, 0.05} & =\left\{f: f>f_{0.05}(3,6)\right\} \\
& =\{f: f>4.76\} .
\end{aligned}
$$

Since $F_{A, o b s} \in \mathcal{R}_{A, 0.05}$, we reject $H_{0 A}$.

Part C /2

Hypothesis Test: $H_{0 B}: \beta_{1}=\beta_{2}=\beta_{3}=0$ vs. $H_{a B}$: At least one $\beta_{j} \neq 0$

Test Statistic:

$$
F_{B}=\frac{M S B}{M S E} \sim F(2,6)
$$

From Part A, we have $F_{B, o b s}=2.80$

Method 1 - p-value: $P_{H_{0}}\left(F>F_{B, o b s}\right)=0.1381$, where $F \sim F(2,6)$.
Since $0.05<0.1381$, we fail to reject $H_{0 B}$.

Method 2 - Rejection Region:

$$
\begin{aligned}
\mathcal{R}_{B, 0.05} & =\left\{f: f>f_{0.05}(2,6)\right\} \\
& =\{f: f>5.14\} .
\end{aligned}
$$

Since $F_{B, o b s} \notin \mathcal{R}_{B, 0.05}$, we fail to reject $H_{0 B}$.

Part D /4

Since we fail to reject $H_{0 B}$ in Part C, we only need to use Tukey's method to identify significant differences among the paint brands.

We start by computing

$$
W=Q_{0.05, I,(I-1)(J-1)} \sqrt{\frac{M S E}{J}}=4.90 \sqrt{\frac{6.7778}{3}}=7.3651
$$

Table 2 presents the sample mean differences between the paint brands. We summarize our findings with the following underscoring pattern. (Note that I subtracted off 400 from each observation to simplify the computing!)

\[

\]

Although there is not a significant difference between paint brands 1 and 2, we can see paint brand 1 appears to be the preferable paint brand.

Table 2: $\bar{X}_{k .}-\bar{X}_{i}$. for $k>i$. The bold-faced elements correspond to the values less than W.

$i \backslash k$	1	2	3	4
1		$\mathbf{4 . 6 6 6 7}$	8.6667	9
2			$\mathbf{4}$	$\mathbf{4 . 3 3 3 3}$
3				$\mathbf{0 . 3 3 3 3}$
4				

Section 11.2 Question 16 /14

Study Objective: Determine if there exists an effect of curing time and mixture type on the comprehensive strength of hardened cement cubes

Formulation: Let

- $X_{i j k}$ denote the k th observation for the i th curing time and j th mixture type, with $i=1,2,3, j=1,2,3,4$, and $k=1,2,3$ (ie $I=3, J=4$, and $K=3$).
We assume that $X_{i j k} \sim N\left(\mu_{i j}, \sigma^{2}\right)$, where $\mu_{i j}=\mu+\alpha_{i}+\beta_{j}+\gamma_{i j}$, with $\sum_{i=1}^{3} \alpha_{i}=0 \sum_{j=1}^{4} \beta_{j}=0$, $\sum_{i=1}^{3} \gamma_{i j}=0$ for each j, and $\sum_{j=1}^{4} \gamma_{i j}$ for each i.

Part A /6

We are to fill out the following ANOVA table:

Source	df	Sum of Squares	Mean Square	F
Curing Time (Factor A)	$I-1$	$S S A$	$M S A$	F_{A}
Mixture Type (Factor B)	$J-1$	$S S B$	$M S B$	F_{B}
Interaction	$(I-1)(J-1)$	$S S A B$	$M S A B$	$F_{A B}$
Error	$I J(K-1)$	$S S E$	$M S E$	
Total	$I J K-1$	$S S T$		

- degrees of freedom for curing time is $I-1=2$
- degrees of freedom for mixture type is $J-1=3$
- degrees of freedom for the curing time and mixture type interaction is $(I-1)(J-1)=6$
- degrees of freedom for error is $I J(K-1)=24$
- total degrees of freedom is $I J K-1=35$
- $S S A=30763.0$ (given to us)
- $S S B=34185.6$ (given to us)
- $S S E=97436.8$ (given to us)
- $S S T=205966.6$ (given to us)
- $S S A B=S S T-S S A-S S B-S S E=43581.2$
- $M S A=S S A /(I-1)=15381.5$
- $M S B=S S B /(J-1)=11395.2$
- $M S A B=S S A B /((I-1)(J-1))=7263.533$
- $M S E=S S E /(I J(K-1))=4059.867$
- $F_{A}=M S A / M S E \approx 3.79$
- $F_{B}=M S B / M S E \approx 2.81$
- $F_{A B}=M S A B / M S E \approx 1.79$

Part B /2

Hypothesis Test: $H_{0 A B}: \gamma_{i j}=0$ for all i, j vs. $H_{a A}$: At least one $\gamma_{i j} \neq 0$

Test Statistic:

$$
F_{A B}=\frac{M S A B}{M S E} \sim F(6,24) .
$$

From Part A, we have $F_{A B, o b s} \approx 1.79$

Method 1 - p-value: $P_{H_{0}}\left(F>F_{A B, o b s}\right)=0.1440$, where $F \sim F(6,24)$.
Since $0.1440>0.05$, we fail to reject $H_{0 A B}$.

Method 2 - Rejection Region:

$$
\begin{aligned}
\mathcal{R}_{A B, 0.05} & =\left\{f: f>f_{0.05}(6,24)\right\} \\
& =\{f: f>2.51\} .
\end{aligned}
$$

Since $F_{A B, \text { obs }} \notin \mathcal{R}_{A B, 0.05}$, we fail to reject $H_{0 A B}$.

Part C /2

Hypothesis Test: $H_{0 A}: \alpha_{1}=\alpha_{2}=\alpha_{3}=0$ vs. $H_{a A}$: At least one $\alpha_{i} \neq 0$

Test Statistic:

$$
F_{A}=\frac{M S A}{M S E} \sim F(2,24) .
$$

From Part A, we have $F_{A, \text { obs }} \approx 3.79$

Method 1 - p-value: $P_{H_{0}}\left(F>F_{A, o b s}\right)=0.0372$, where $F \sim F(2,24)$.
Since $0.0372<0.05$, we reject $H_{0 A}$.

Method 2 - Rejection Region:

$$
\begin{aligned}
\mathcal{R}_{A, 0.05} & =\left\{f: f>f_{0.05}(2,24)\right\} \\
& =\{f: f>3.40\}
\end{aligned}
$$

Since $F_{A, o b s} \in \mathcal{R}_{A, 0.05}$, we reject $H_{0 A}$.

Part D /2

Hypothesis Test: $H_{0 B}: \beta_{1}=\beta_{2}=\beta_{3}=\beta_{4}=0$ vs. $H_{a B}$: At least one $\beta_{j} \neq 0$

Test Statistic:

$$
F_{B}=\frac{M S B}{M S E} \sim F(3,24) .
$$

From Part A, we have $F_{B, \text { obs }} \approx 2.81$

Method 1 - p-value: $P_{H_{0}}\left(F>F_{B, o b s}\right)=0.0612$, where $F \sim F(3,24)$.
Since $0.0612>0.05$, we fail to reject $H_{0 B}$.

Method 2 - Rejection Region:

$$
\begin{aligned}
\mathcal{R}_{B, 0.05} & =\left\{f: f>f_{0.05}(3,24)\right\} \\
& =\{f: f>3.01\}
\end{aligned}
$$

Since $F_{B, o b s} \notin \mathcal{R}_{B, 0.05}$, we fail to reject $H_{0 B}$.

Part E /2

Note that we can apply Tukey's method, since we failed to reject $H_{0 A B}$ in Part \mathbf{B}, and rejected $H_{0 A}$ in Part C.

We start by computing

$$
W=Q_{0.05, I, I J(K-1)} \sqrt{\frac{M S E}{J K}}=3.53 \sqrt{\frac{4059.867}{12}}=64.9292
$$

Table 3 presents the sample mean differences between the curing times. We summarize our findings with the following underscoring pattern

$$
\begin{array}{cccc}
k & 3 & 1 & 2 \\
\bar{X}_{k . .} & 3960.02 & 4010.88 & 4029.10 \\
\hline
\end{array}
$$

Although there is not a significant difference between curing times 1 and 3 , we can see a significant difference between curing times 3 and 2 .

Table 3: $\bar{X}_{l . .}-\bar{X}_{i . .}$ for $l>i$. The bold-faced elements correspond to the values less than W.

$i \backslash l$	3	1	2
3		$\mathbf{5 0 . 8 6}$	69.08
1			$\mathbf{1 8 . 2 2}$
2			

Section 11.2 Question 22 /8

Study Objective: Determine if there exists a difference between the writing lifetimes of four premium brands of pens. However, it is believed that the writing surface might affect the writing lifetime.

Formulation: Let

- $X_{i j k}$ denote the k th observation for the i th brand type and j th writing surface, with $i=1,2,3,4, j=1,2,3$, and $k=1,2$ (ie $I=4, J=3$, and $K=2$).

We assume that $X_{i j k} \sim N\left(\mu_{i j}, \sigma^{2}+\sigma_{B}^{2}+\sigma_{G}^{2}\right)$, where $\mu_{i j}=\mu+\alpha_{i}+B_{j}+G_{i j}$, with $\sum_{i=1}^{3} \alpha_{i}=0$, $B_{j} \stackrel{i i d}{\sim} N\left(0, \sigma_{B}^{2}\right)$, and $G_{i j} \stackrel{i i d}{\sim} N\left(0, \sigma_{G}^{2}\right)$.

Hypothesis Test:

$$
\begin{aligned}
& H_{0 A}: \alpha_{1}=\alpha_{2}=\alpha_{3}=\alpha_{4}=0 \text { vs. } H_{a A}: \text { At least one } \alpha_{i} \neq 0 \\
& H_{0 B}: \sigma_{B}^{2}=0 \text { vs. } H_{a B}: \sigma_{B}^{2}>0 \\
& H_{0 G}: \sigma_{G}^{2}=0 \text { vs. } H_{a G}: \sigma_{G}^{2}>0
\end{aligned}
$$

Note: It is customary to test $H_{0 A}$ and $H_{0 B}$ if we fail to reject $H_{0 G}$. To conduct the hyptohesis tests, let's fill out the following ANOVA table:

Source	df	Sum of Squares	Mean Square	F
Pen Brand (Factor A)	$I-1$	$S S A$	$M S A$	F_{A}
Writing Surface (Factor B)	$J-1$	$S S B$	$M S B$	F_{B}
Interaction	$(I-1)(J-1)$	$S S A B$	$M S A B$	$F_{A B}$
Error	$I J(K-1)$	$S S E$	$M S E$	
Total	$I J K-1$	$S S T$		

- degrees of freedom for pen brand is $I-1=3$
- degrees of freedom for writing surface is $J-1=2$
- degrees of freedom for the pen brand and writing surface interaction is $(I-1)(J-1)=6$
- degrees of freedom for error is $I J(K-1)=12$
- total degrees of freedom is $I J K-1=23$
- $S S T=\sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K}\left(X_{i j k}-\bar{X}_{\ldots}\right)^{2}=20591.83$
- $S S E=\sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K}\left(X_{i j k}-\bar{X}_{i j} .\right)^{2}=8216.0$
- $S S A=J K \sum_{i=1}^{I}\left(\bar{X}_{i . .}-\bar{X}_{\ldots .}\right)^{2}=1387.5$
- $S S B=I K \sum_{j=1}^{J}\left(\bar{X}_{. j .}-\bar{X}_{. .}\right)^{2}=2888.083$
- $S S A B=S S T-S S A-S S B-S S E=8100.25$
- $M S A=S S A /(I-1)=462.5$
- $M S B=S S B /(J-1)=1444.042$
- $M S A B=S S A B /((I-1)(J-1))=1350.042$
- $M S E=S S E /(I J(K-1))=684.6667$
- $F_{A}=M S A / M S A B \approx 0.34$
- $F_{B}=M S B / M S A B \approx 1.07$
- $F_{A B}=M S A B / M S E \approx 1.97$

Test Statistics:

$$
\begin{aligned}
F_{A} & =\frac{M S A}{M S A B} \sim F(I-1,(I-1)(J-1)) \\
F_{B} & =\frac{M S B}{M S A B} \sim F(J-1,(I-1)(J-1)) \\
F_{A B} & =\frac{M S A B}{M S E} \sim F((I-1)(J-1), I J(K-1))
\end{aligned}
$$

Decision:

$P_{H_{0 G}}\left(F_{A B}>F_{A B, o b s}\right)=0.1492$, where $F_{A B} \sim F(6,12)$. Since $0.05<0.1492$, we fail to reject $H_{0 G}$.
$P_{H_{0 A}}\left(F_{A}>F_{A, o b s}\right)=0.7960$, where $F_{A} \sim F(3,6)$ since $0.05<0.7960$, we fail to reject $H_{0 A}$.
$P_{H_{0 B}}\left(F_{B}>F_{B, o b s}\right)=0.4006$, where $F_{A} \sim F(2,6)$ since $0.05<0.4006$, we fail to reject $H_{0 B}$.

