STAT-285 Homework 8 Solutions

Section 11.3 Question $30 / 11$

Study Objective: Determine if there exists an effect of nitrogen level, times of planting, and potassium level on the N content of corn grain.

Formulation: Let

- $X_{i j k}$ denote the (sole) observation attributed with the i th nitrogen level, j th time of planting, and k th potassium level, with $i=1,2,3,4, j=1,2$, and $k=1,2$ (ie $I=4$, $J=2$, and $K=2$).

We assume that $X_{i j k} \sim N\left(\mu_{i j k}, \sigma^{2}\right)$, where $\mu_{i j k}=\mu+\alpha_{i}+\beta_{j}+\gamma_{i j}^{A B}+\gamma_{i k}^{A C}+\gamma_{j k}^{B C}$, with $\sum_{i=1}^{I} \alpha_{i}=0, \sum_{j=1}^{J} \beta_{j}=0, \cdots$

Part A /5
We are to fill out the following ANOVA table:

Source	df	Sum of Squares	Mean Square	F
Nitrogen Level (Factor A)	$I-1$	$S S A$	$M S A$	F_{A}
Planting Time (Factor B)	$J-1$	$S S B$	$M S B$	F_{B}
Potassium Level (Factor C)	$K-1$	$S S C$	$M S C$	F_{C}
AB	$(I-1)(J-1)$	$S S A B$	$M S A B$	$F_{A B}$
AC	$(I-1)(K-1)$	$S S A C$	$M S A C$	$F_{A C}$
BC	$(J-1)(K-1)$	$S S B C$	$M S B C$	$F_{B C}$
Error	$(I-1)(J-1)(K-1)$	$S S E$	$M S E$	
Total	$I J K-1$	$S S T$		

- df for nitrogen level is $I-1=3$
- dffor planting time is $J-1=1$
- df for potassium level is $K-1=1$
- df for nitrogen level and planting time interaction is $(I-1)(J-1)=3$
- df for nitrogen level and potassium level interaction is $(I-1)(K-1)=3$
- df for planting time and potassium level interaction is $(J-1)(K-1)=1$
- df for error is $(I-1)(J-1)(K-1)=3$
- total df is $I J K-1=15$
- $S S T=0.2384$ (given to us)
- $S S A=0.22625$ (given to us)
- $S S B=0.000025$ (given to us)
- $S S C=0.0036$ (given to us)
- $S S A B=0.004325$ (given to us)
- $S S A C=0.00065$ (given to us)
- $S S B C=0.000625$ (given to us)
- $S S E=S S T-S S A-S S B-S S C-S S A B-S S A C-S S B C=0.002925$
- $M S A=S S A /(I-1)=0.0754$
- $M S B=S S B /(J-1)=0.00003$
- $M S C=S S C /(J-1)=0.0036$
- $M S A B=S S A B /((I-1)(J-1))=0.0014$
- $M S A C=S S A C /((I-1)(K-1))=0.0002$
- $M S B C=S S B C /((J-1)(K-1))=0.0006$
- $M S E=S S E /((I-1)(J-1)(K-1))=0.0010$
- $F_{A}=M S A / M S E=77.35$
- $F_{B}=M S B / M S E=0.03$
- $F_{C}=M S C / M S E=3.69$
- $F_{A B}=M S A B / M S E=1.48$
- $F_{A C}=M S A C / M S E=0.22$
- $F_{B C}=M S B C / M S E=0.64$

Part B /4

Hypothesis Test: $H_{0 A}: \alpha_{1}=\alpha_{2}=\alpha_{3}=\alpha_{4}=0$ vs. $H_{a A}$: At least one $\alpha_{i} \neq 0$
Test Statistic:

$$
F_{A}=\frac{M S A}{M S E} \sim F(3,3) .
$$

From Part A, we have $F_{A, o b s}=77.35$. Since $P_{H_{0}}\left(F>F_{A, o b s}\right)=0.0024<0.05$, we reject $H_{0 A}$.

Hypothesis Test: $H_{0 B}: \beta_{1}=\beta_{2}=0$ vs. $H_{a B}: \beta_{1} \neq 0$ or $\beta_{2} \neq 0$

Test Statistic:

$$
F_{B}=\frac{M S B}{M S E} \sim F(1,3)
$$

From Part A, we have $F_{B, o b s}=0.03$. Since $P_{H_{0}}\left(F>F_{B, o b s}\right)=0.8830>0.05$, we fail to reject $H_{0 B}$.

Hypothesis Test: $H_{0 C}: \delta_{1}=\delta_{2}=0$ vs. $H_{a C}: \delta_{1} \neq 0$ or $\delta_{2} \neq 0$
Test Statistic:

$$
F_{C}=\frac{M S C}{M S E} \sim F(1,3)
$$

From Part A, we have $F_{C, o b s}=3.69$. Since $P_{H_{0}}\left(F>F_{C, o b s}\right)=0.1504>0.05$, we fail to reject $H_{0 C}$.

Hypothesis Test: $H_{0 A B}: \gamma_{i j}^{A B}=0$ for all i, j vs. $H_{a A B}$: At least one $\gamma_{i j}^{A B} \neq 0$

Test Statistic:

$$
F_{A B}=\frac{M S A B}{M S E} \sim F(3,3)
$$

From Part A, we have $F_{A B, o b s}=1.48$. Since $P_{H_{0}}\left(F>F_{A B, o b s}\right)=0.37783>0.05$, we fail to reject $H_{0 A B}$.

Hypothesis Test: $H_{0 A C}: \gamma_{i k}^{A C}=0$ for all i, k vs. $H_{a A C}$: At least one $\gamma_{i k}^{A C} \neq 0$

Test Statistic:

$$
F_{A C}=\frac{M S A C}{M S E} \sim F(3,3)
$$

From Part A, we have $F_{A C, o b s}=0.22$. Since $P_{H_{0}}\left(F>F_{A C, o b s}\right)=0.8758>0.05$, we fail to reject $H_{0 A C}$.

Hypothesis Test: $H_{0 B C}: \gamma_{j k}^{B C}=0$ for all j, k vs. $H_{a B C}$: At least one $\gamma_{j k}^{B C} \neq 0$
Test Statistic:

$$
F_{B C}=\frac{M S B C}{M S E} \sim F(1,3)
$$

From Part A, we have $F_{B C, o b s}=0.64$. Since $P_{H_{0}}\left(F>F_{B C, o b s}\right)=0.4819>0.05$, we fail to reject $H_{0 B C}$.

Part C /2

Note that we can apply Tukey's method, since we failed to reject $H_{0 A B}$ and $H_{0 A C}$ in Part B, and rejected $H_{0 A}$ in Part B.

We start by computing

$$
W=Q_{0.05, I,(I-1)(J-1)(K-1)} \sqrt{\frac{M S E}{J K}}=6.82 \sqrt{\frac{0.0010}{4}}=0.1065
$$

where $J K$ is the number of observations averaged to obtain each $\bar{X}_{i . .}$. We summarize our findings with the following underscoring pattern

$$
\begin{array}{lllll}
i & 1 & 2 & 3 & 4 \\
\bar{X}_{i . .} & 1.12 & 1.3025 & 1.3875 & 1.43
\end{array}
$$

We can see that the difference between the first level of nitrogen with the others is statistically significant.

Section 12.2 Question $15 \quad / 10$

Study Objective: Investigate how modulus of elasticity (MOE) is related to flexural strength in concrete beams of a certain type.

Formulation: Let

- Y_{i} denote the i th measurement of flexural strength, for $i=1, \cdots, n$, with $n=27$.
- X_{i} denote the i th measurement of MOE, for $i=1, \cdots, n$.

The goal is to establish how Y_{i} depends on X_{i} :

$$
Y_{i}=f\left(X_{i}\right)+\varepsilon_{i}
$$

where $E\left(\varepsilon_{i}\right)=0, \operatorname{Var}\left(\varepsilon_{i}\right)=\sigma^{2}, X_{i}$ and ε_{i} are independent, and $f\left(X_{i}\right)=E\left(Y_{i} \mid X_{i}\right)$. We specify $f(\cdot)$ to be a linear function

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\varepsilon_{i}
$$

with β_{0} and β_{1} as unknown parameters.

Part A /2

Table 1 illustrates the stem-and-leaf display. The digit on the left side of the bar "|" is the tens-place digit, and the digit on the right hand side of the bar "" is the ones-place digit. We can see that the majority of the observations lie in the interval [33, 49], and the distribution of MOE values is skewed to the right.

Table 1: Stem-and-leaf display of the MOE values for Section 12.2 Question 15

2	9
3	335566677889
4	122356689
5	1
6	29
7	9
8	0

Part B /2

If Y was completely determined by X, then the regression model would be

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}
$$

Although we can see a linear relationship between X and Y in Figure 1, the relationship however is not deterministic.

Figure 1: Scatter plot of Y vs X for data from Section 12.2 Question 15, and the estimated least squares line.

Part C $/ 4$

We can see that $\hat{\beta}_{0}=3.2925$ and $\hat{\beta}_{1}=0.10748$, so the estimated regression line is

$$
\hat{Y}_{i}=3.2925+0.10748 X_{i} .
$$

When $X=40$, the predicted value of Y is

$$
\hat{Y}=\hat{E}(Y \mid X=40)=3.2925+0.10748(40)=7.5917
$$

We should not use the regression line to predict Y when $X=100$, since we do not have any observations near $X=100$ in our sample. In other words, we cannot ensure that the linear relationship between X and Y holds for values of $X>80$.

Part D /2

We can see that $S S E=18.736, S S T=71.605$, and $R^{2}=1-(S S E / S S T)=0.738$
Since the value of R^{2} is quite large, we can conclude that the simple linear regression effectively describes the relationship between X and Y.

Section 12.2 Question $16 \quad / 14$

Study Objective: Investigate how rainfall volume $\left(m^{3}\right)$ is related to runoff volume $\left(m^{3}\right)$ in a particular location.

Formulation: Let

- Y_{i} denote the i th measurement of runoff volume, for $i=1, \cdots, n$, with $n=15$.
- X_{i} denote the i th measurement of rainfall volume, for $i=1, \cdots, n$.

The goal is to establish how Y_{i} depends on X_{i} :

$$
Y_{i}=f\left(X_{i}\right)+\varepsilon_{i}
$$

where $E\left(\varepsilon_{i}\right)=0, \operatorname{Var}\left(\varepsilon_{i}\right)=\sigma^{2}, X_{i}$ and ε_{i} are independent, and $f\left(X_{i}\right)=E\left(Y_{i} \mid X_{i}\right)$. We specify $f(\cdot)$ to be a linear function

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\varepsilon_{i}
$$

with β_{0} and β_{1} as unknown parameters.

Part A /2

We can see in Figure 2 that there is a strong linear relationship between X and Y, which supports the use of the simple linear regression model.

Figure 2: Scatter plot of Y vs X for data from Section 12.2 Question 16.

Part B /6

We have

$$
\begin{aligned}
\bar{Y} & =\frac{1}{n} \sum_{i=1}^{n} Y_{i}=42.86667 \\
\bar{X} & =\frac{1}{n} \sum_{i=1}^{n} X_{i}=53.2 \\
S_{x y} & =\sum_{i=1}^{n} X_{i} Y_{i}-n \bar{X} \bar{Y}=17024.4 \\
S_{x x} & =\sum_{i=1}^{n} X_{i}^{2}-n \bar{X}^{2}=20586.4
\end{aligned}
$$

Then point estimates for β_{0} and β_{1} are

$$
\begin{aligned}
& \hat{\beta}_{1}=\frac{S_{x y}}{S_{x x}} \approx 0.8270 \\
& \hat{\beta}_{0}=\bar{Y}-\hat{\beta}_{1} \bar{X} \approx-1.1283
\end{aligned}
$$

Part C /2

A point estimate of the $E(Y \mid X=50)$ is

$$
\hat{E}(Y \mid X=50)=-1.1283+0.8270(50)=40.2204
$$

Part D /2

With

$$
S S E=\sum_{i=1}^{n}\left(Y_{i}-\left(\hat{\beta}_{0}+\hat{\beta}_{1} X_{i}\right)\right)^{2}=357.0117
$$

a point estimate for σ is

$$
\hat{\sigma}=\sqrt{\hat{\sigma}^{2}}=\sqrt{\frac{S S E}{n-2}} \approx 5.2405
$$

Part E /2
With

$$
S S T=\sum_{i=1}^{n} Y_{i}^{2}-n \bar{Y}^{2}=14435.73
$$

the proportion of variation in runoff volume explained by rainfall volume in the simple linear regression model is

$$
R^{2}=1-\frac{S S E}{S S T}=0.9753
$$

Section 12.3 Question $32 / 6$

Note: This question is a continuation of Section 12.2 Question 16
Hypothesis Test: $H_{0}: \beta_{1}=0$ vs. $H_{a}: \beta_{1} \neq 0$.
Test Statistic:

$$
T=\frac{\hat{\beta}_{1}}{\sqrt{\hat{\sigma}^{2} / S_{x x}}} \sim t(n-2)
$$

under H_{0}. Here, note that

$$
\hat{\beta}_{1}=\sum_{i=1}^{n} \frac{X_{i}-\bar{X}}{S_{X X}} Y_{i}
$$

so that

$$
\begin{aligned}
\operatorname{Var}\left(\hat{\beta}_{1}\right) & =\sum_{i=1}^{n}\left(\frac{X_{i}-\bar{X}}{S_{X X}}\right)^{2} \operatorname{Var}\left(Y_{i}\right) \\
& =\frac{\sigma^{2}}{S_{X X}}
\end{aligned}
$$

From the model output, we are given that

$$
\begin{aligned}
\hat{\beta}_{1} & =0.82697 \\
\widehat{S E}\left(\hat{\beta}_{1}\right) & =\sqrt{\frac{\hat{\sigma}^{2}}{S_{x x}}}=0.03652, \\
T_{o b s} & =\frac{\hat{\beta}_{1}}{\sqrt{\hat{\sigma}^{2} / S_{x x}}}=22.64
\end{aligned}
$$

Method 1 - p-value: $P_{H_{0}}\left(|T|>\left|T_{o b s}\right|\right)=P_{H_{0}}(|T|>22.64) \approx 7.8961 \times 10^{-12}$, where $T \sim t(n-2)$.
Specifying $\alpha=0.05$, since $0.05>7.8961 \times 10^{-12}$, we reject H_{0}.

Method 2 - Rejection Region:

$$
\mathcal{R}_{0.05}=\left\{t:|t|>t_{\alpha / 2}(n-2)\right\}
$$

$$
\begin{aligned}
& =\left\{t:|t|>t_{0.025}(13)\right\} \\
& =\{t:|t|>2.16\} .
\end{aligned}
$$

Since $T_{o b s} \in \mathcal{R}$, we reject H_{0}.

A 95% confidence interval for β_{1} is

$$
\begin{aligned}
\hat{\beta}_{1} \pm t_{0.025}(13) \times \widehat{S E}\left(\hat{\beta}_{1}\right) & =0.82697 \pm 2.16 \times 0.03652 \\
& \approx[0.7481,0.9059]
\end{aligned}
$$

Section 12.4 Question $44 \quad / 9$

Note: This question is a continuation of Section 12.2 Question 15.
For this question, let $\mu_{Y \mid X=x}$ denote $E(Y \mid X=x)=\beta_{0}+\beta_{1} x$ (the expected value of Y given $X=x$).

Part A /2

From the stem-and-leaf display from Section 12.2 Question 15, the majority of observations are around $X=40$, whereas we have few observations around $X=60$. The increased variability with large values of X is a reflection of possessing comparatively limited information.

Part B /3

A 95% confidence interval for $\mu_{Y \mid X=40}$ is

$$
\begin{aligned}
\hat{\mu}_{Y \mid X=40} \pm t_{0.025}(25) \times \widehat{S E}\left(\hat{\mu}_{Y \mid X=40}\right) & =7.592 \pm 2.06 \times 0.179 \\
& \approx[7.2233,7.9607]
\end{aligned}
$$

Part C /3

Note that $S^{2}=0.8657$ is reported in Section 12.2 Question 15 .
A 95% prediction interval for $Y \mid X=40$ is

$$
\begin{aligned}
\hat{\mu}_{Y \mid X=40} \pm t_{0.025}(25) \times \sqrt{S^{2}+\widehat{S E}\left(\hat{\mu}_{Y \mid X=40}\right)^{2}} & =7.592 \pm 2.06 \times \sqrt{0.8657^{2}+0.179^{2}} \\
& \approx[5.7713,9.4127]
\end{aligned}
$$

Part D /1

Using the Bonferroni technique, the simultaneous confidence level for the two intervals is $100(1-2 \times 0.05) \%=90 \%$.

