STAT-285 Homework 9 Solutions

Section 13.4 Question $41 / 10$

Study Objective: Investigate how eccentricity and axial length in eyes are related to cone cell packing density.

Formulation: Let

- Y_{i} denote the i th measurement of cone cell packing density (cells $/ \mathrm{mm}^{2}$), for $i=$ $1, \cdots, n$, with $n=192$.
- $X_{i 1}$ denote the i th measurement of eccentricity (mm), for $i=1, \cdots, n$.
- $X_{i 2}$ denote the i th measurement of axial length (mm), for $i=1, \cdots, n$.

The relationship between Y_{i} with $X_{i 1}$ and $X_{i 2}$ is specified to be

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\varepsilon_{i}
$$

where $E\left(\varepsilon_{i}\right)=0, \operatorname{Var}\left(\varepsilon_{i}\right)=\sigma^{2}$, and ε_{i} is independent from $X_{i 1}$ and $X_{i 2}$. Here, $\beta_{0}, \beta_{1}, \beta_{2}$, and σ^{2} are unknown parameters.

Part A /2
We are told that $R^{2}=0.834$. This means that 83.4% of the variability in Y can be explained by X_{1} and X_{2}.

To carry out a test of model utility, we consider the following hypothesis test:

Hypothesis Test: $H_{0}: \beta_{1}=\beta_{2}=0$ vs. $H_{a}: \beta_{1} \neq 0$ or $\beta_{2} \neq 0$.
Test Statistic:

$$
F=\frac{R^{2} / k}{\left(1-R^{2}\right) /(n-k-1)} \sim F(k, n-k-1)
$$

under H_{0}. Here, $k=2$ is the number of independent variables included in the model. Plugging in the corresponding values results in $F_{o b s}=474.7771$. Since $P_{H_{0}}\left(F>F_{o b s}\right)=$ 1.9962×10^{-74}, we reject H_{0} for essentially any value of α.

Part B /1

We are given $\hat{E}\left(Y \mid X_{1}, X_{2}\right)=35821.792-6294.729 X_{1}-348.037 X_{2}$. That is, $\hat{\beta}_{0}=35821.792$, $\hat{\beta}_{1}=-6294.729$, and $\hat{\beta}_{2}=-348.037$. Then

$$
\hat{E}(Y \mid 1,25)=35821.792-6294.729(1)-348.037(25)=20826.14
$$

Part C /2

Note that

$$
\beta_{1}=E\left(Y \mid X_{1}+1, X_{2}\right)-E\left(Y \mid X_{1}, X_{2}\right)
$$

The model implies by holding axial length fixed, the expected cone cell packing density will decrease by $6,294.729$ cells $/ \mathrm{mm}^{2}$ for every 1 mm increase in eccentricity.

Part D /3

A 95% confidence interval for β_{1} is

$$
\hat{\beta}_{1} \pm t_{0.025}(189) \widehat{S E}\left(\hat{\beta}_{1}\right)=-6294.729 \pm 1.9726 \times 203.702 \approx[-6696.551,-5892.907]
$$

Interpretation: Holding axial length constant, we are 95% confident that the average decrease in cone cell packing density by increasing eccentricity by 1 mm is between 5,892.907 and $6,696.551$

Part E /2

Hypothesis Test: $H_{0}: \beta_{2}=0$ vs. $H_{a}: \beta_{2} \neq 0$.
We will conduct the hypothesis test by computing a 95% confidence interval for β_{2} :

$$
\hat{\beta}_{2} \pm t_{0.025}(189) \widehat{S E}\left(\hat{\beta}_{2}\right)=-348.037 \pm 1.9726 \times 134.350 \approx[-613.05515,-83.01885]
$$

Since $0 \notin[-613.05515,-83.01885]$, we reject H_{0} with $\alpha=0.05$, and conclude that the effect of axial length on cone cell packing density is statistically significant.

Section 13.2 Question $15 \quad / 14$

Study Objective: Investigate how frying time is related to moisture content in tortilla chips.

Formulation: Let

- Y_{i} denote the i th measurement of moisture content (\%), for $i=1, \cdots, n$, with $n=8$.
- X_{i} denote the i th measurement of frying time (sec), for $i=1, \cdots, n$.

The relationship between Y_{i} and X_{i} is specified as

$$
Y_{i}=f\left(X_{i}\right)+\varepsilon_{i}
$$

where $f(\cdot)$ is some function, $E\left(\varepsilon_{i}\right)=0, \operatorname{Var}\left(\varepsilon_{i}\right)=\sigma^{2}$, and ε_{i} is independent from X_{i}.

Part A /2

Figure 1 presents a scatter plot of Y_{i} vs. X_{i}, for $i=1, \cdots, 8$. We can see that the relationship between X and Y appears to be a power relationship.

Figure 1: Scatter plot of Y vs. X for data from Section 13.2 Question 15.

Part B /2

Figure 2 presents a scatter plot of $\log Y_{i}$ vs. $\log X_{i}$, for $i=1, \cdots, 8$. We can see that the relationship between $\log X$ and $\log Y$ appears to be linear. That is, the following appears to be appropriate for this data:

$$
\log Y_{i}=\alpha_{0}+\alpha_{1} \log X_{i}+\varepsilon_{i}
$$

Part C $/ 2$

From the linear model suggested from Part B:

Figure 2: Scatter plot of $\log Y$ vs. $\log X$ for data from Section 13.2 Question 15, and the estimated least squares line.

$$
\begin{aligned}
Y & =\exp \left\{\alpha_{0}+\log X_{i}^{\alpha_{1}}+\varepsilon_{i}\right\} \\
& =\exp \left\{\alpha_{0}\right\} X_{i}^{\alpha_{1}} \exp \left\{\varepsilon_{i}\right\} \\
& =\beta_{0} X_{i}^{\alpha_{1}} \varepsilon_{i}^{*}
\end{aligned}
$$

where $\beta_{0}=\exp \left\{\alpha_{0}\right\}$ and $\varepsilon^{*}=\exp \{\varepsilon\}$.

Part D /5

Although the wording of the question is kind of confusing, we are asked to provide a (95\%) prediction interval of Y given $X=20$. By fitting a regression line, illustrated in Figure 2, we have

$$
\hat{E}\left(\log Y_{i} \mid \log X_{i}\right)=4.638-1.049 \log X_{i} .
$$

A point estimate for the predicted value of $\log Y$ given $\log X=\log 20$ is

$$
\hat{E}\left(\log Y_{i} \mid \log 20\right)=4.638-1.049(\log 20)=1.4953
$$

Other quantities we need are

$$
\begin{aligned}
\hat{\sigma} & =\sqrt{\frac{1}{6} \sum_{i=1}^{8}\left(\log Y_{i}-\hat{E}\left(\log Y_{i} \mid \log 20\right)\right)^{2}}=0.1449, \\
\overline{\log X} & =\sum_{i=1}^{8} \log X_{i} / 8=3.0171 \\
S_{\log X, \log X} & =\sum_{i=1}^{8}\left(\log X_{i}\right)^{2}-\left(\sum_{i=1}^{8} \log X_{i}\right)^{2} / 8=2387.5
\end{aligned}
$$

So that a 95% prediction interval for $\log Y$ given $\log X=\log 20$ is

$$
\begin{aligned}
& \hat{E}\left(\log Y_{i} \mid \log 20\right) \pm t_{0.025}(n-2) \hat{\sigma} \sqrt{1+\frac{1}{n}+\frac{(\log 20-\overline{\log X})^{2}}{S_{\log X, \log X}}} \\
& =1.4953 \pm 2.4469 \times 0.1449 \sqrt{1+\frac{1}{8}+\frac{(\log 20-3.0171)^{2}}{2387.5}} \\
& \approx[1.1192,1.8714] .
\end{aligned}
$$

Therefore, an approximate 95% prediction interval for Y given $X=20$ is

$$
[\exp \{1.1192\}, \exp \{1.8714\}]=[3.0624,6.4973]
$$

Part E /3

Figure 3 illustrates a scatter plot of the residuals vs. the fitted values, as well as a Normal Q-Q plot of the residuals. We can see that

- The residual corresponding to the third observation is quite large relative to the others.
- There is no apparent trend within in the scatter plot.
- Aside from the residuals pertaining to observations 1 and 3 , all of the other points are near the reference line.

Figure 3:
Left: Scatter plot of the residuals $\hat{e}_{i}=\log Y_{i}-\hat{E}\left(\log Y_{i} \mid \log X_{i}\right)$ vs. $\hat{E}\left(\log Y_{i} \mid \log X_{i}\right)$.
Right: Normal Q-Q plot of \hat{e}_{i}

Section 13.3 Question $29 \quad / 8$

Study Objective: Investigate how viscosity (MPa $\cdot \mathrm{s}$) is related to free-flow \% in highalumina refractory castables.

Formulation: Let

- Y_{i} denote the i th measurement of free-flow $\%$, for $i=1, \cdots, n$, with $n=7$.
- X_{i} denote the i th measurement of viscosity ($\mathrm{MPa} \cdot \mathrm{s}$), for $i=1, \cdots, n$.

The relationship between Y_{i} and X_{i} is specified to be

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\beta_{2} X_{i}^{2} \varepsilon_{i},
$$

where $E\left(\varepsilon_{i}\right)=0, \operatorname{Var}\left(\varepsilon_{i}\right)=\sigma^{2}$, and ε_{i} is independent from X_{i}. The question gives us $\hat{\beta}_{0}=-295.96, \hat{\beta}_{1}=2.1885$, and $\hat{\beta}_{2}=-0.0031662$

Part A /2

Table 1 displays the data and relevant quantities. The predicted values are \hat{Y}_{i}, the residuals are \hat{e}_{i}, and

$$
\begin{aligned}
S S E & =\sum_{i=1}^{7} \hat{e}_{i}^{2}=16.7718 \\
S^{2} & =\frac{S S E}{n-3}=4.1929
\end{aligned}
$$

Table 1: Data and relevant quantities for Section 13.3 Question 29

i	X_{i}	Y_{i}	Y_{i}^{2}	\hat{Y}_{i}	$\hat{e}_{i}=Y_{i}-\hat{Y}_{i}$	\hat{e}_{i}^{2}
1	351	81	6,561	82.1342	-1.1342	1.2864
2	367	83	6,889	80.7771	2.2229	4.9414
3	373	79	6,241	79.8502	-0.8502	0.7229
4	400	75	5,625	72.8583	2.1417	4.5870
5	402	70	4,900	72.1567	-2.1567	4.6513
6	456	43	1,849	43.6398	-0.6398	0.4094
7	484	22	484	21.5837	0.4163	0.1733
Total	-	453	32,549	-	-	16.7718

Part B /1

Using information from Table 1,

$$
\begin{aligned}
S S T & =\sum_{i=1}^{7} Y_{i}^{2}-\left(\sum_{i=1}^{7} Y_{i}\right)^{2} / 7=3233.429 \\
R^{2} & =1-\frac{S S E}{S S T}=0.9948
\end{aligned}
$$

Approximately 99.48% of the variability in Y can be explained by X and X^{2}.
Part C /1
Hypothesis Test: $H_{0}: \beta_{2}=0$ vs. $H_{a}: \beta_{2} \neq 0$.

Test Statistic:

$$
T=\frac{\hat{\beta}_{2}}{\widehat{S E}\left(\hat{\beta}_{2}\right)} \sim t(n-k-1)
$$

under H_{0}. Here, $k=2$ and plugging in the corresponding values results in $T_{\text {obs }}=-6.5483$.

Since $P_{H_{0}}\left(|T|>\left|T_{\text {obs }}\right|\right)=P_{H_{0}}(|T|>6.5483) \approx 0.0028$. We therefore reject H_{0} with $\alpha=0.05$, and conclude that the quadratic term belongs in the regression model.

Part D /2

To have a joint confidence level of at least 95%, we use the Bonferonni procedure and specify α to be

$$
\begin{aligned}
& 100(1-2 \alpha) \% \geq 0.95 \\
\Rightarrow & \alpha \leq 0.025
\end{aligned}
$$

The textbook solution specifies $\alpha=0.02$, but any value of $\alpha \leq 0.025$ would work too.
A 98% confidence interval for β_{1} is

$$
\hat{\beta}_{1} \pm t_{0.01}(n-3) \widehat{S E}\left(\hat{\beta}_{1}\right)=2.1885 \pm 3.7469 \times 0.4050 \approx[0.6708,3.7062]
$$

A 98% confidence interval for β_{2} is

$$
\hat{\beta}_{2} \pm t_{0.01}(n-3) \widehat{S E}\left(\hat{\beta}_{2}\right)=-0.0031662 \pm 3.7469 \times 0.0004835 \approx[-0.0050,-0.0014]
$$

Part E /2

Using the estimated regression fit provided by the question, $\hat{E}(Y \mid X=400)=72.8583$
A 95% confidence interval for $E(Y \mid X=400)$ is

$$
\begin{aligned}
& \hat{E}(Y \mid X=400) \pm t_{0.025}(n-3) \widehat{S E}(\hat{E}(Y \mid X=400)) \\
& =72.8583 \pm 2.7764 \times 1.198 \\
& \approx[69.532,76.184]
\end{aligned}
$$

A 95% prediction interval for a future observation with $X=400$ is

$$
\begin{aligned}
& \hat{E}(Y \mid X=400) \pm t_{0.025}(n-3) \sqrt{S^{2}+\widehat{S E}(\hat{E}(Y \mid X=400))^{2}} \\
& =72.8583 \pm 2.7764 \sqrt{4.1929+1.198^{2}} \\
& \approx[66.2715,79.4450] .
\end{aligned}
$$

Due to the extra variability in predicting Y, the prediction interval is wider compared to the confidence interval.

Section 13.4 Question $48 \quad / 8$

Study Objective: Investigate how three levels of temperature, time of treatment, and tartaric acid concentration are related to weight loss.

Formulation: Let

- Y_{i} denote the i th measurement of weight loss $\%$, for $i=1, \cdots, n$, with $n=15$.
- $X_{i 1} \in\{-1,0,1\}$ denote the i th level of temperature (in Celsius), for $i=1, \cdots, n$.
- $X_{i 2} \in\{-1,0,1\}$ denote the i th level of time of treatment (minutes), for $i=1, \cdots, n$.
- $X_{i 3} \in\{-1,0,1\}$ denote the i th level of tartaric acid concentration $(\mathrm{g} / \mathrm{L})$, for $i=$ $1, \cdots, n$.

The relationship between Y_{i} and X_{i} is specified to be
$Y_{i}=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\beta_{3} X_{i 3}+\beta_{4} X_{i 1}^{2}+\beta_{5} X_{i 2}^{2}+\beta_{6} X_{i 3}^{2}+\beta_{7} X_{i 1} X_{i 2}+\beta_{8} X_{i 1} X_{i 3}+\beta_{9} X_{i 2} X_{i 3}+\varepsilon_{i}$,
where $E\left(\varepsilon_{i}\right)=0, \operatorname{Var}\left(\varepsilon_{i}\right)=\sigma^{2}$, and ε_{i} is independent from $\left\{X_{i 1}, X_{i 2}, X_{i 3}\right\}$. The question gives us the estimated parameters and relevant quantities to work with. Fitting the regression model in R results in the same estimates provided.

Part A /2

To determine if the specified relationship is meaningful, we conduct the following hypothesis test:
Hypothesis Test: $H_{0}: \beta_{1}=\cdots=\beta_{9}=0$ vs. H_{a} : At least one $\beta_{j} \neq 0$, for $j=1, \cdots, 9$.

Test Statistic:

$$
F=\frac{R^{2} / k}{\left(1-R^{2}\right) /(n-k-1)} \sim F(k, n-k-1)
$$

under H_{0}. Here, $k=9$ is the number of independent variables included in the model. Plugging in the corresponding values results in $F_{o b s}=8.3469$. Since $P_{H_{0}}\left(F>F_{o b s}\right)=0.0155$, we fail to reject H_{0} with $\alpha=0.01$.

Part B /2

In terms of notation, let $E(Y \mid \boldsymbol{X})$ denote the expected value of Y given $\boldsymbol{X}=\left(X_{1}, \cdots, X_{9}\right)^{\prime}$, and $E(Y \mid \mathbf{0})$ denote the expected value of Y given $\boldsymbol{X}=\mathbf{0}$.

With the estimates they provided, $\hat{E}(Y \mid \mathbf{0})=21.9667$, and a 95% confidence interval for $E(Y \mid \mathbf{0})$ is

$$
\begin{aligned}
& \hat{E}(Y \mid \mathbf{0}) \pm t_{0.025}(n-10) \widehat{S E}(\hat{E}(Y \mid \mathbf{0})) \\
& =21.9667 \pm 2.5707 \times 1.248 \\
& \approx[18.7586,25.1748]
\end{aligned}
$$

Part C

With $S^{2}=S S E /(n-10)=4.6758$, a 95% prediction interval for a future observation with $\boldsymbol{X}=\mathbf{0}$ is

$$
\begin{aligned}
& \hat{E}(Y \mid \mathbf{0}) \pm t_{0.025}(n-10) \sqrt{\widehat{S E}(\hat{E}(Y \mid \mathbf{0}))^{2}+S^{2}} \\
& =21.9667 \pm 2.5707 \times \sqrt{1.248^{2}+4.6758^{2}} \\
& \approx[15.5488,28.3846] .
\end{aligned}
$$

Part D /2

To determine if any of the second order predictors belong in the model, we conduct the following hypothesis test:
Hypothesis Test: $H_{0}: \beta_{4}=\cdots=\beta_{9}=0$ vs. H_{a} : At least one $\beta_{j} \neq 0$, for $j=4, \cdots, 9$.
Test Statistic: Let $S S E_{F}$ and $S S E_{R}$ denote $S S E$ under the full and reduced model, respectively. Since the reduced model has $\ell=3$ predictors, the test statistic is

$$
F=\frac{\left(S S E_{R}-S S E_{F}\right) /(k-\ell)}{S S E_{F} /(n-k-1)} \sim F(k-\ell, n-k-1)
$$

under H_{0}. Plugging in the corresponding values results in $F_{\text {obs }}=6.4316$. Since $P_{H_{0}}\left(F>F_{\text {obs }}\right)=0.0296$, we fail to reject H_{0} with $\alpha=0.01$.

