What to do today (March 14, 2023)?

Part 3. Important Topics in Statistics (Chp 10-13)

§3.1. Analysis of Variance (ANOVA, Chp 10-11)

- §3.1.1 Introduction
- §3.1.2 One-Factor ANOVA (Chp 10)
- §3.1.3 Multi-Factor ANOVA (Chp 11)
- §3.1.4 Further Topics on ANOVA

§3.2. Introduction to Regression Analysis (Chp 12-13)

- §3.2.1 Introduction
- §3.2.2 Simple Linear Regression (Chp 12)

§3.2.3 More Advanced Topics (Chp 13)

Some Logistics.

- ▶ Homework 8 has been assigned. It's due on Monday March 20.
- Marked Midterm 2 papers will be distributed at next week's tutorial.

What if $n \ge 1$ (i.e. n = 1)? **Example 6.4** (p438)

- Study. to remove marks on fabrics from erasable pens with A: brand of pen and B: wash treatment.
- Data. overall specimen color change (lower, better): I = 3, J = 4 and n = 1

		E				
А	1	2	3	4	total	average
1	.97				2.39	.598
2	.77				1.38	.345
3	.67				1.82	.455
total	2.41	1.01	1.27	.90	5.59	
average						.466

To test on H_{0A}, H_{0B} and H_{0AB}? two factor study but n = 1: in 2-factor ANOVA table n_T = IJ ⇒ consider μ_{ij} = μ + α_i + β_j.

ANOVA table.

Source of Variation	df	SS	MSS	F-value
A	3-1	0.128		$F_{A,obs} = 4.43$
В	4-1	0.480		$F_{B,obs} = 11.05$
error	(3-1)(4-1)	0.087		
total	12-1	0.695		

Making inference.

$$\begin{split} f_{\alpha}(2,6) &= 5.14 > F_{A,obs} \Longrightarrow \text{ don't reject } H_{0A}. \\ f_{\alpha}(3,6) &= 4.76 > F_{B,obs} \Longrightarrow \text{ reject } H_{0B}. \end{split}$$

§3.1.4 Further Topics on ANOVA

3.1.4A Multi-factor ANOVA

For example, a study on how adult body weights relate to (A) gender (f,m), (B) age (y,m,e) and (C) education (lh, h, u, pu) \implies a 3-factor study: I = 2, J = 3 and K = 4.

what to consider: (i) main effects of A, B, C? (ii) two-factor interactions: AB,BC,AC? (iii) three-factor interactions: ABC?

observations. X_{ijkl} : *I*th obs from group (i, j, k), $l = 1, ..., n_{ijk}$ with i = 1, ..., l, j = 1, ..., J and k = 1, ..., K.

3-factor ANOVA model.

$$X_{ijkl} = \mu_{ijk} + \epsilon_{ijkl}, \quad \epsilon_{ijkl} \sim N(0, \sigma^2)$$
 iid

 $\mu_{ijk} = \mu + \alpha_i + \beta_i + \gamma_k + (\alpha\beta)_{ij} + (\beta\gamma)_{jk} + (\alpha\gamma)_{ik} + (\alpha\beta\gamma)_{ijk} \text{ with constraints } \sum_i \alpha_i = 0, \dots$

hypotheses to test?

Set 1. on main effects

 H_{0A} : $\alpha_i = 0$ vs H_{1A} : otherwise; H_{0B} : $\beta_j = 0$ vs H_{1B} : otherwise; H_{0C} : $\gamma_k = 0$ vs H_{1C} : otherwise

Set 2. on two factor interactions

 $\begin{array}{l} H_{0AB} : (\alpha\beta)_{ij} = 0 \text{ vs } H_{1AB} : otherwise; \\ H_{0BC} : (\beta\gamma)_{jk} = 0 \text{ vs } H_{1BC} : otherwise; \\ H_{0AC} : (\alpha\gamma)_{ik} = 0 \text{ vs } H_{1AC} : otherwise \end{array}$

Set 3. on three factor interactions H_{0ABC} : $(\alpha\beta\gamma)_{ijk} = 0$ vs H_{1ABC} : otherwise.

variation decomposition. Only if $n_{ijk} \equiv n > 1$

$$SS_T = SS_A + SS_B + SS_C + SS_{AB} + SS_{BC} + SS_{AC} + SS_{ABC} + SS_{ee}$$

testing procedures. Test statistics: for example

$$\blacktriangleright F_A = \frac{MSS_A}{MSS_e} = \frac{SS_A/(I-1)}{SS_e/(n_T - IJK)} \sim F(I-1, (n-1)IJK) \text{ under } H_{0A}.$$

►
$$F_{AB} = \frac{MSS_{AB}}{MSS_e} = \frac{SS_{AB}/(I-1)(J-1)}{SS_e/(n_T - IJK)} \sim F((I-1)(J-1), (n-1)IJK)$$

under H_{0AB}

►
$$F_{ABC} = \frac{MSS_{ABC}}{MSS_e} = \frac{SS_{ABC}/(I-1)(J-1)(K-1)}{SS_e/(n_T - IJK)} \sim F((I-1)(J-1)(K-1), (n-1)IJK)$$
 under H_{0ABC}

3.1.4B* ANOVA with Random (Mixed) Effects For example, in a study with one factor A: *I* is large.

One-factor random effect ANOVA model.

$$X_{ij} = \mu_i + \epsilon_{ij} = \mu + \alpha_i + \epsilon_{ij}$$

 $\alpha_i \sim N(0, \sigma_{\alpha}^2)$ iid, i = 1, ..., I; $\alpha_i \perp \epsilon_{ij}$; $\epsilon_{ij} \sim N(0, \sigma^2)$ iid, $j = 1, ..., n_i$ and i = 1, ..., I. \implies The value of α_i is not of the primary interest but the patterns of α_i , i = 1, ..., I

► F-test.

$$SS_T = SS_{tr} + SS_e; \ E(SS_{tr}) = \sigma^2 + \frac{1}{I-1}(n_T - \frac{\sum_i n_i^2}{n_T})\sigma_{\alpha}^2$$

 $H_0: \sigma_{lpha}^2 = 0$ vs $H_1: otherwise$

$$F = \frac{MSS_{tr}}{MSS_e} = \frac{SS_{tr}/(I-1)}{SS_e/(n_T-I)} \sim F(I-1, n_T-I)$$

under H_0

For another example, in 2-factor study: effect of A is random, effect of B is fixed

\implies a mixed-effects ANOVA model

e.g., a new drug's efficacy -30 hospitals (sites) participate in the trial and both male and female subjects are enrolled

Example 6.6 (p457)

- Study. two potential causes of electric motor vibration: A. the materialused for the motor casing; B. the supply source of bearings used in the motor.
- **Data.** on amount of vibration: I=3, J=5, K=2

▶ Model. (two-factor mixed effects model with α_i as fixed effect, β_j and $(\alpha\beta)_{ij}$ random): $X_{ijk} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \epsilon_{ijk}$, $\epsilon_{ijk} \sim N(0, \sigma^2)$ iid, $\beta_j \sim N(0, \sigma^2_\beta)$ and $(\alpha\beta)_{ij} \sim N(0, \sigma^2_{\alpha\beta})$; $\beta_j \perp (\alpha\beta)_{ij} \perp \epsilon_{ijk}$

• Test
$$H_{0A}$$
: $\alpha_i = 0$, H_{0B} : $\sigma_{\beta}^2 = 0$ and H_{0AB} : $\sigma_{\alpha\beta}^2 = 0$?

ANOVA table. (using the MINITAB output)

Source of Variation	df	SS	MSS	F-value	p-value		
A	3-1	0.7047		$F_{A,obs} = 0.24$.790		
В	5-1	36.6747		$F_{B,obs} = 6.32$.013		
AB	(3-1)(5-1)	11.6053		$F_{AB,obs} = 13.05$	< .001		
error	(3)(5)(2-1)	1.67					
total	30-1	50.6547					
Making inference.							

Using significance-level $\alpha = .05$,

 \implies reject H_{0B} and reject H_{0AB} .

What will we study next?

- §3.2. Introduction to Regression Analysis (Chp 12-13)
 - §3.2.1 Introduction
 - §3.2.2 Simple Linear Regression (Chp 12)
 - 3.2.2A modeling
 - 3.2.2B estimation of model parameters
 - 3.2.2C additional inferences
 - 3.2.2D residual analysis
 - §3.2.3 More Advanced Topics (Chp 13)
 - 3.2.3A multiple linear regression
 - 3.2.3B regression with transformed variables
 - 3.2.3C categorical predictors
 - 3.2.3D discussion

§3.2. Introduction to Regression Analysis

§3.2.1 Introduction. (Why and What?)

Recall a function in math

$$x \longrightarrow y : y = f(x)$$

e.g. $y = mileage, x = time \implies y = ax$ with a = speed if the speed over [0, x] is uniform.

- In reality, examples of "given x, is y fully determined"? e.g. x = height, y = weight: can we have y = f(x)?
- What if it is of interest to establish how a variable Y depends on another variable X?

 \implies Regression Analysis.

• Key idea: focus on studying E(Y|X) = f(X)

$$Y = f(X) + \epsilon, \ E(\epsilon) = 0$$

What is $f(\cdot)$?

• to start with $f(\cdot)$ is a linear function:

 $Y = \beta_0 + \beta_1 X + \epsilon$

\implies Simple Linear Regression Analysis (Chp 12).

• if $f(\cdot)$ is not linear? \implies Nonlinear Regression Analysis.

 What if it is of interest to establish how a variable Y depends on several variables X₁,..., X_K?
 ⇒ Multiple Linear (Nonlinear) Regression Analysis (Chp 13).

§3.2.2 Simple Linear Regression (Chp 12)

§3.2.2A Modeling

Goal. to establish how r.v. Y depends on a variable X linearly

$$Y = \beta_0 + \beta_1 X + \epsilon$$

- Y: response variable, dependent variable
- X: explanatory variable, independent variable, predictor
- ϵ : random error $E(\epsilon) = 0$ and $V(\epsilon) = \sigma^2$, and $X \perp \epsilon$
- parameters β_0 and β_1 : intercept and slope

Data. Consider a study of *n* independent units, with the values of the predictor *X* are x_1, \ldots, x_n , corresponding to the observed responses y_1, \ldots, y_n , respectively.

Simple Linear Regression Model

Given data from independent units: $\{(X_i, Y_i) : i = 1, ..., n\}$

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$

with ϵ_i independent and $E(\epsilon_i) = 0$ and $V(\epsilon_i) = \sigma^2$.

What are β_0, β_1 and σ^2 ? \implies to estm the parameter with the data ... that is, to fit the regression model

§3.2.2B Estimation of model parameters

Recall the Simple Linear Regression Model:

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i,$$

for i = 1, ..., n, ϵ_i 's are independent and $E(\epsilon_i) = 0$, $V(\epsilon_i) = \sigma^2$. (i) to estm β_0 , β_1 .

thinking ... If b_0 and b_1 are good estimates for β_0 and β_1 , $Y_i - (b_0 + b_1 X_i)$ should be small for all *i*:

$$L(\beta_0, \beta_1) = \sum_{i=1}^{n} \{Y_i - (\beta_0 + \beta_1 X_i)\}^2$$

should be small at (b_0, b_1) .

Least Squares Estimation (LSE). The estimators $\hat{\beta}_0$, $\hat{\beta}_1$ are the LSE of β_0 , β_1 , if

$$L(\hat{\beta}_0,\hat{\beta}_1)=\min_{\beta_0,\beta_1}L(\beta_0,\beta_1).$$

The LSE of β_0, β_1 is the solution to

$$\begin{cases} \frac{\partial L(\beta_0,\beta_1)}{\partial \beta_0} = \sum_{i=1}^n 2(Y_i - \beta_0 - \beta_1 X_i) = 0\\ \frac{\partial L(\beta_0,\beta_1)}{\partial \beta_1} = \sum_{i=1}^n 2(Y_i - \beta_0 - \beta_1 X_i) X_i = 0 \end{cases}$$

$$\bar{X} = \sum_i X_i/n, \ \bar{Y} = \sum_i Y_i/n.$$

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (X_{i} - \bar{X})(Y_{i} - \bar{Y})}{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}}$$
$$\hat{\beta}_{0} = \bar{Y} - \hat{\beta}_{1} \bar{X}$$

Often denote $\hat{eta}_1 = S_{XY} \big/ S_{XX}$ with

$$S_{XY} = \sum_{i} (X_i - \bar{X})(Y_i - \bar{Y}) = \sum_{i} X_i Y_i - n\bar{X}\bar{Y}$$

and

$$S_{XX} = \sum_{i} (X_i - \bar{X})(X_i - \bar{X}) = \sum_{i} X_i^2 - n\bar{X}^2.$$

Properties of the LSE $\hat{\beta}_0$ and $\hat{\beta}_1$:

▶ **linear.** (linear functions of Y_i's)

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (X_{i} - \bar{X}) Y_{i}}{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}} = \sum_{i} \frac{(X_{i} - \bar{X})}{S_{XX}} Y_{i}$$
$$\hat{\beta}_{0} = \bar{Y} - \hat{\beta}_{1} \bar{X} = \sum_{i} \left[\frac{1}{n} - \frac{(X_{i} - \bar{X}) \bar{X}}{S_{XX}}\right] Y_{i}$$

unbiased. Note that

$$E(\hat{\beta}_1) = \frac{E(S_{XY})}{S_{XX}},$$

$$E(S_{XY}) = \sum_{i} (X_i - \bar{X})(\beta_0 + \beta_1 X_i - [\beta_0 + \beta_1 \bar{X}]) = \beta_1 \sum_{i} (X_i - \bar{X})^2$$

 $\Longrightarrow E(\beta_1) = \beta_1.$

$$V(\hat{\beta}_{1}) = \frac{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2} V(Y_{i})}{S_{XX}^{2}} = \frac{\sigma^{2}}{S_{XX}}$$
$$V(\hat{\beta}_{0}) = \sigma^{2} [\frac{1}{n} + \frac{\bar{X}^{2}}{S_{XX}}]$$

Study designs: to have a large S_{XX} . (Why?)

► the best unbiased linear estimator $V(\hat{\beta}_1) \leq V(\tilde{\beta}_1)$; $V(\hat{\beta}_0) \leq V(\tilde{\beta}_0)$

if $\tilde{\beta}_0, \tilde{\beta}_1$ are unbiased linear estimators of β_0, β_1 .

(ii) to estm σ^2

thinking ... $\sigma^2 = V(\epsilon)$ can be estimated by the sample variance $\sum_{i=1}^{n} (\epsilon_i - \overline{\epsilon})^2 / (n-1)$ if $\epsilon_i = Y_i - [\beta_0 + \beta_1 X_i]$ were observable.

How about using $e_i = Y_i - \hat{Y}_i = Y_i - [\hat{\beta}_0 + \hat{\beta}_1 X_i]$?

 \implies an unbiased estimator of σ^2 :

$$\hat{\sigma}^2 = \frac{\sum_{i=1}^n e_i^2}{n-2} = \frac{SS_e}{n-2} = MSS_e$$

Further inferences, e.g. CI and testing? What are the distributions of the LSE $\hat{\beta}_0$ and $\hat{\beta}_1$?

 \implies to be studied later

What will we study next?

Part 1. Introduction and Review (Chp 1-5)

Part 2. Basic Statistical Inference (Chp 6-9)

Part 3. Important Topics in Statistics (Chp 10-13) §3.1A One-Factor Analysis of Variance (Chp 10) §3.1B Multi-Factor ANOVA (Chp 11)
§3.2A Simple Linear Regression Analysis (Chp 12) §3.2B More on Regression (Chp 13)

Part 4. Further Topics (Selected from Chp 14-16)