What to do today (March 14, 2023)?

Part 3. Important Topics in Statistics (Chp 10-13)
 §3.1. Analysis of Variance (ANOVA, Chp 10-11)
 §3.1.1 Introduction
 §3.1.2 One-Factor ANOVA (Chp 10)
 §3.1.3 Multi-Factor ANOVA (Chp 11)
 §3.1.4 Further Topics on ANOVA
 §3.2. Introduction to Regression Analysis (Chp 12-13)
 §3.2.1 Introduction
 §3.2.2 Simple Linear Regression (Chp 12)
 §3.2.3 More Advanced Topics (Chp 13)

Some Logistics.

- Homework 8 has been assigned. It's due on Monday March 20.
- Marked Midterm 2 papers will be distributed at next week's tutorial.

What if $n \ngtr>1$ (i.e. $n=1$)?
Example 6.4 (p438)

- Study. to remove marks on fabrics from erasable pens with A: brand of pen and B : wash treatment.
- Data. overall specimen color change (lower, better): $I=3$, $J=4$ and $n=1$

A	B				total	average
	1	2	3	4		
1	. 97			2.39	. 598
2	. 77			1.38	. 345
3	. 67			1.82	. 455
total average	2.41			. 90	5.59	. 466

- To test on $H_{0 A}, H_{0 B}$ and $H_{0 A B}$? two factor study but $n=1$: in 2-factor ANOVA table $n_{T}=I J$ \Longrightarrow consider $\mu_{i j}=\mu+\alpha_{i}+\beta_{j}$.
- ANOVA table.

Source of Variation	df	SS	MSS	F-value
A	$3-1$	0.128	\ldots	$F_{A, \text { obs }}=4.43$
B	$4-1$	0.480	\ldots	$F_{B, \text { obs }}=11.05$
error	$(3-1)(4-1)$	0.087	\ldots	
total	$12-1$	0.695	\ldots	

- Making inference.
$f_{\alpha}(2,6)=5.14>F_{A, \text { obs }} \Longrightarrow$ don't reject $H_{0 A}$. $f_{\alpha}(3,6)=4.76>F_{B, o b s} \Longrightarrow$ reject $H_{0 B}$.

§3.1.4 Further Topics on ANOVA

3.1.4A Multi-factor ANOVA

For example, a study on how adult body weights relate to (A) gender $(f, m),(B)$ age (y, m, e) and (C) education (lh, h, u, pu)
\Longrightarrow a 3-factor study: $I=2, J=3$ and $K=4$.
what to consider: (i) main effects of $\mathrm{A}, \mathrm{B}, \mathrm{C}$? (ii) two-factor interactions: $\mathrm{AB}, \mathrm{BC}, \mathrm{AC}$? (iii) three-factor interactions: $A B C$?
observations. $X_{i j k l}$: Ith obs from group $(i, j, k), I=1, \ldots, n_{i j k}$ with $i=1, \ldots, l, j=1, \ldots, J$ and $k=1, \ldots, K$.

3-factor ANOVA model.

$$
X_{i j k l}=\mu_{i j k}+\epsilon_{i j k l}, \quad \epsilon_{i j k l} \sim N\left(0, \sigma^{2}\right) \mathrm{iid}
$$

$\mu_{i j k}=\mu+\alpha_{i}+\beta_{i}+\gamma_{k}+(\alpha \beta)_{i j}+(\beta \gamma)_{j k}+(\alpha \gamma)_{i k}+(\alpha \beta \gamma)_{i j k}$ with constraints $\sum_{i} \alpha_{i}=0, \ldots$

hypotheses to test?

- Set 1. on main effects
$H_{0 A}: \alpha_{i}=0$ vs $H_{1 A}$: otherwise;
$H_{0 B}: \beta_{j}=0$ vs $H_{1 B}$: otherwise;
$H_{0 C}: \gamma_{k}=0$ vs $H_{1 C}$: otherwise
- Set 2. on two factor interactions
$H_{0 A B}:(\alpha \beta)_{i j}=0$ vs $H_{1 A B}$: otherwise;
$H_{0 B C}:(\beta \gamma)_{j k}=0$ vs $H_{1 B C}$: otherwise;
$H_{0 A C}:(\alpha \gamma)_{i k}=0$ vs $H_{1 A C}$: otherwise
- Set 3. on three factor interactions
$H_{0 A B C}:(\alpha \beta \gamma)_{i j k}=0$ vs $H_{1 A B C}$: otherwise.
variation decomposition. Only if $n_{i j k} \equiv n>1$

$$
S S_{T}=S S_{A}+S S_{B}+S S_{C}+S S_{A B}+S S_{B C}+S S_{A C}+S S_{A B C}+S S_{e}
$$

testing procedures. Test statistics: for example

- $F_{A}=\frac{M S S_{A}}{M S S_{e}}=\frac{S S_{A} /(I-1)}{S S_{e} /(n T-I J K)} \sim F(I-1,(n-1) I J K)$ under $H_{0 A}$.
- $F_{A B}=\frac{M S S_{A B}}{M S S_{e}}=\frac{S S_{A B} /(I-1)(J-1)}{S S_{e} /(n T-I J K)} \sim F((I-1)(J-1),(n-1) I J K)$ under $H_{0 A B}$
- $F_{A B C}=\frac{M S S_{A B C}}{M S S_{e}}=\frac{S S_{A B C} /(I-1)(J-1)(K-1)}{S S_{e} /(n T-I J K)} \sim$ $F((I-1)(J-1)(K-1),(n-1) I J K)$ under $H_{0 A B C}$

3.1.4B* ANOVA with Random (Mixed) Effects

For example, in a study with one factor A: I is large.

- One-factor random effect ANOVA model.

$$
X_{i j}=\mu_{i}+\epsilon_{i j}=\mu+\alpha_{i}+\epsilon_{i j}
$$

$\alpha_{i} \sim N\left(0, \sigma_{\alpha}^{2}\right)$ iid, $i=1, \ldots, l ; \alpha_{i} \perp \epsilon_{i j} ;$
$\epsilon_{i j} \sim N\left(0, \sigma^{2}\right)$ iid, $j=1, \ldots, n_{i}$ and $i=1, \ldots, l$.
\Longrightarrow The value of α_{i} is not of the primary interest but the patterns of α_{i},
$i=1, \ldots$, I

- F-test.

$$
S S_{T}=S S_{t r}+S S_{e} ; \quad E\left(S S_{t r}\right)=\sigma^{2}+\frac{1}{l-1}\left(n_{T}-\frac{\sum_{i} n_{i}^{2}}{n_{T}}\right) \sigma_{\alpha}^{2}
$$

$H_{0}: \sigma_{\alpha}^{2}=0$ vs $H_{1}:$ otherwise

$$
F=\frac{M S S_{t r}}{M S S_{e}}=\frac{S S_{t r} /(I-1)}{S S_{e} /\left(n_{T}-I\right)} \sim F\left(I-1, n_{T}-I\right)
$$

under H_{0}

For another example, in 2-factor study: effect of A is random, effect of B is fixed
\Longrightarrow a mixed-effects ANOVA model
e.g., a new drug's efficacy - 30 hospitals (sites) participate in the trial and both male and female subjects are enrolled

Example 6.6 (p457)

- Study. two potential causes of electric motor vibration: A. the materialused for the motor casing; B. the supply source of bearings used in the motor.
- Data. on amount of vibration: $\mathrm{I}=3, \mathrm{~J}=5, \mathrm{~K}=2$
- Model. (two-factor mixed effects model with α_{i} as fixed effect, β_{j} and $(\alpha \beta)_{i j}$ random): $X_{i j k}=\mu+\alpha_{i}+\beta_{j}+(\alpha \beta)_{i j}+\epsilon_{i j k}$, $\epsilon_{i j k} \sim N\left(0, \sigma^{2}\right)$ iid, $\beta_{j} \sim N\left(0, \sigma_{\beta}^{2}\right)$ and $(\alpha \beta)_{i j} \sim N\left(0, \sigma_{\alpha \beta}^{2}\right)$; $\beta_{j} \perp(\alpha \beta)_{i j} \perp \epsilon_{i j k}$
- Test $H_{0 A}: \alpha_{i}=0, H_{0 B}: \sigma_{\beta}^{2}=0$ and $H_{0 A B}: \sigma_{\alpha \beta}^{2}=0$?
- ANOVA table. (using the MINITAB output)

Source of Variation	df	SS	MSS	F-value	p-value
A	$3-1$	0.7047	\ldots	$F_{A, \text { obs }}=0.24$.790
B	$5-1$	36.6747	\ldots	$F_{B, \text { obs }}=6.32$.013
AB	$(3-1)(5-1)$	11.6053	\ldots	$F_{A B, \text { obs }}=13.05$	$<.001$
error	$(3)(5)(2-1)$	1.67	\ldots		
total	$30-1$	50.6547	\ldots		

- Making inference.

Using significance-level $\alpha=.05$,
\Longrightarrow reject $H_{0 B}$ and reject $H_{0 A B}$.

What will we study next?

§3.2. Introduction to Regression Analysis (Chp 12-13)
§3.2.1 Introduction
§3.2.2 Simple Linear Regression (Chp 12)
3.2.2A modeling
3.2.2B estimation of model parameters
3.2.2C additional inferences
3.2.2D residual analysis
§3.2.3 More Advanced Topics (Chp 13)
3.2.3A multiple linear regression
3.2.3B regression with transformed variables
3.2.3C categorical predictors
3.2.3D discussion

§3.2. Introduction to Regression Analysis

§3.2.1 Introduction. (Why and What?)

- Recall a function in math

$$
x \longrightarrow y: y=f(x)
$$

e.g. $y=$ mileage, $x=$ time $\Longrightarrow y=a x$ with $a=$ speed if the speed over $[0, x]$ is uniform.

- In reality, examples of "given x, is y fully determined"? e.g. $x=$ height, $y=$ weight: can we have $y=f(x)$?
- What if it is of interest to establish how a variable Y depends on another variable X ?
\Longrightarrow Regression Analysis.
- Key idea: focus on studying $E(Y \mid X)=f(X)$

$$
Y=f(X)+\epsilon, \quad E(\epsilon)=0
$$

What is $f(\cdot)$?

- to start with $f(\cdot)$ is a linear function:

$$
Y=\beta_{0}+\beta_{1} X+\epsilon
$$

\Longrightarrow Simple Linear Regression Analysis (Chp 12).

- if $f(\cdot)$ is not linear? \Longrightarrow Nonlinear Regression Analysis.
- What if it is of interest to establish how a variable Y depends on several variables X_{1}, \ldots, X_{K} ?
\Longrightarrow Multiple Linear (Nonlinear) Regression Analysis (Chp 13).

§3.2.2 Simple Linear Regression (Chp 12)

§3.2.2A Modeling

Goal. to establish how r.v. Y depends on a variable X linearly

$$
Y=\beta_{0}+\beta_{1} X+\epsilon
$$

- Y : response variable, dependent variable
- X : explanatory variable, independent variable, predictor
- ϵ : random error $E(\epsilon)=0$ and $V(\epsilon)=\sigma^{2}$, and $X \Perp \epsilon$
- parameters β_{0} and β_{1} : intercept and slope

Data. Consider a study of n independent units, with the values of the predictor X are x_{1}, \ldots, x_{n}, corresponding to the observed responses y_{1}, \ldots, y_{n}, respectively.

i (obs)	1	2	\ldots	\ldots	n	total	squares total
x_{i}	x_{1}	x_{2}	\ldots	\ldots	x_{n}	$\sum x_{i}$	$\sum x_{i}^{2}$
y_{i}	y_{1}	y_{2}	\ldots	\ldots	y_{n}	$\sum y_{i}$	$\sum y_{i}^{2}$
	cross-product total: $\sum x_{i} y_{i}$						

Simple Linear Regression Model

Given data from independent units: $\left\{\left(X_{i}, Y_{i}\right): i=1, \ldots, n\right\}$

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\epsilon_{i}
$$

with ϵ_{i} independent and $E\left(\epsilon_{i}\right)=0$ and $V\left(\epsilon_{i}\right)=\sigma^{2}$.
What are β_{0}, β_{1} and σ^{2} ?
\Longrightarrow to estm the parameter with the data ...
that is, to fit the regression model

§3.2.2B Estimation of model parameters

Recall the Simple Linear Regression Model:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\epsilon_{i}
$$

for $i=1, \ldots, n, \epsilon_{i}$'s are independent and $E\left(\epsilon_{i}\right)=0, V\left(\epsilon_{i}\right)=\sigma^{2}$.
(i) to estm β_{0}, β_{1}.
thinking ... If b_{0} and b_{1} are good estimates for β_{0} and β_{1}, $Y_{i}-\left(b_{0}+b_{1} X_{i}\right)$ should be small for all i :

$$
L\left(\beta_{0}, \beta_{1}\right)=\sum_{i=1}^{n}\left\{Y_{i}-\left(\beta_{0}+\beta_{1} X_{i}\right)\right\}^{2}
$$

should be small at $\left(b_{0}, b_{1}\right)$.
Least Squares Estimation (LSE). The estimators $\hat{\beta}_{0}, \hat{\beta}_{1}$ are the LSE of β_{0}, β_{1}, if

$$
L\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right)=\min _{\beta_{0}, \beta_{1}} L\left(\beta_{0}, \beta_{1}\right)
$$

The LSE of β_{0}, β_{1} is the solution to

$$
\begin{aligned}
& \left\{\begin{array}{l}
\frac{\partial L\left(\beta_{0}, \beta_{1}\right)}{\partial \beta_{0}}=\sum_{i=1}^{n} 2\left(Y_{i}-\beta_{0}-\beta_{1} X_{i}\right)=0 \\
\frac{\partial L\left(\beta_{0}, \beta_{1}\right)}{\partial \beta_{1}}=\sum_{i=1}^{n} 2\left(Y_{i}-\beta_{0}-\beta_{1} X_{i}\right) X_{i}=0
\end{array}\right. \\
& \bar{X}=\sum_{i} X_{i} / n, \bar{Y}=\sum_{i} Y_{i} / n .
\end{aligned}
$$

$$
\begin{aligned}
& \hat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}} \\
& \hat{\beta}_{0}=\bar{Y}-\hat{\beta}_{1} \bar{X}
\end{aligned}
$$

Often denote $\hat{\beta}_{1}=S_{X Y} / S_{X X}$ with

$$
S_{X Y}=\sum_{i}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)=\sum_{i} X_{i} Y_{i}-n \bar{X} \bar{Y}
$$

and

$$
S_{X X}=\sum_{i}\left(X_{i}-\bar{X}\right)\left(X_{i}-\bar{X}\right)=\sum_{i} X_{i}^{2}-n \bar{X}^{2}
$$

Properties of the LSE $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$:

- linear. (linear functions of Y_{i} 's)

$$
\begin{aligned}
& \hat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right) Y_{i}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}=\sum_{i} \frac{\left(X_{i}-\bar{X}\right)}{S_{X X}} Y_{i} \\
& \hat{\beta}_{0}=\bar{Y}-\hat{\beta}_{1} \bar{X}=\sum_{i}\left[\frac{1}{n}-\frac{\left(X_{i}-\bar{X}\right) \bar{X}}{S_{X X}}\right] Y_{i}
\end{aligned}
$$

- unbiased. Note that

$$
\begin{gathered}
E\left(\hat{\beta}_{1}\right)=\frac{E\left(S_{X Y}\right)}{S_{X X}} \\
E\left(S_{X Y}\right)=\sum_{i}\left(X_{i}-\bar{X}\right)\left(\beta_{0}+\beta_{1} X_{i}-\left[\beta_{0}+\beta_{1} \bar{X}\right]\right)=\beta_{1} \sum_{i}\left(X_{i}-\bar{X}\right)^{2} \\
\Longrightarrow E\left(\hat{\beta}_{1}\right)=\beta_{1} .
\end{gathered}
$$

- variance.

$$
\begin{aligned}
V\left(\hat{\beta}_{1}\right) & =\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} V\left(Y_{i}\right)}{S_{X X}^{2}}=\frac{\sigma^{2}}{S_{X X}} \\
V\left(\hat{\beta}_{0}\right) & =\sigma^{2}\left[\frac{1}{n}+\frac{\bar{X}^{2}}{S_{X X}}\right]
\end{aligned}
$$

Study designs: to have a large $S_{X X}$. (Why?)

- the best unbiased linear estimator

$$
V\left(\hat{\beta}_{1}\right) \leq V\left(\tilde{\beta}_{1}\right) ; V\left(\hat{\beta}_{0}\right) \leq V\left(\tilde{\beta}_{0}\right)
$$

if $\tilde{\beta}_{0}, \tilde{\beta}_{1}$ are unbiased linear estimators of β_{0}, β_{1}.
(ii) to estm σ^{2}
thinking ... $\sigma^{2}=V(\epsilon)$ can be estimated by the sample variance $\sum_{i=1}^{n}\left(\epsilon_{i}-\bar{\epsilon}\right)^{2} /(n-1)$ if $\epsilon_{i}=Y_{i}-\left[\beta_{0}+\beta_{1} X_{i}\right]$ were observable.

How about using $e_{i}=Y_{i}-\hat{Y}_{i}=Y_{i}-\left[\hat{\beta}_{0}+\hat{\beta}_{1} X_{i}\right]$?
\Longrightarrow an unbiased estimator of σ^{2} :

$$
\hat{\sigma}^{2}=\frac{\sum_{i=1}^{n} e_{i}^{2}}{n-2}=\frac{S S_{e}}{n-2}=M S S_{e}
$$

Further inferences, e.g. Cl and testing? What are the distributions of the LSE $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$?
\Longrightarrow to be studied later

What will we study next?

Part 1. Introduction and Review (Chp 1-5)
Part 2. Basic Statistical Inference (Chp 6-9)
Part 3. Important Topics in Statistics (Chp 10-13)
§3.1A One-Factor Analysis of Variance (Chp 10)
§3.1B Multi-Factor ANOVA (Chp 11)
§3.2A Simple Linear Regression Analysis (Chp 12) §3.2B More on Regression (Chp 13)

Part 4. Further Topics (Selected from Chp 14-16)

