What to do today (March 24, 2023)?

Part 3. Important Topics in Statistics (Chp 10-13)

- *§3.1.* Analysis of Variance (ANOVA, Chp 10-11)
- §3.2. Introduction to Regression Analysis (Chp 12-13)
 - §3.2.1 Introduction
 - §3.2.2 Simple Linear Regression (Chp 12)
 - §3.2.3 More Advanced Topics (Chp 13)
 - 3.2.3A Multiple linear regression
 - 3.2.3B Regression with transformed variables
 - 3.2.3C Regression with categorical predictors
 - 3.2.3D Discussion
 - 3.2.3E A Comprehensive Example

Some Logistics.

- ▶ Homework 9 has been assigned. It's due on Monday March 27.
- The remaining Midterm 2 papers are with Joan Hu.

3.2.3B Regression with transformed variables

Goal. to establish how Y depends on X_1, \ldots, X_K

– always linear relationship? Examples ...

- $Y \in (0,\infty)$: In $Y = \beta_0 + \beta_1 X + \epsilon$
- ▶ Polynominal regression: $Y = \beta_0 + \beta_1 X + \beta_2 X^2 + \epsilon$
- ► Relationship with two predictors (interaction): $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_{12} X_1 X_2 + \epsilon$
- more examples in Table 13.1 of the textbook

In general,

 $g(Y) = \beta_0 + \beta_1 h_1(X_1) + \ldots + \beta_k h_K(X_K) + \epsilon.$

$$\implies Y^* = \beta_0 + \beta_1 X_1^* + \ldots + \beta_K X_K^* + \epsilon$$

with $Y^* = g(Y)$; $X_1^* = h_1(X_1), \dots, X_K^* = h_K(X_K)$. \implies A strategy of conducting nonlinear regression analysis by linear regression analysis (General Linear Regression Analysis)

3.2.3C Regression with categorical predictors

What if an explanatory variable in the regression is qualitative?

 Introducing "dummy" variables to indicate the categories. For example,

"predictor" = gender: female vs male. Define

$$X = \left\{ egin{array}{cc} 1 & male \ 0 & female \end{array}
ight.$$

"predictor" = color: red vs yellow vs blue. Define

$$X_1 = \left\{ egin{array}{ccc} 1 & red \\ 0 & otherwise \end{array}
ight. X_2 = \left\{ egin{array}{ccc} 1 & yellow \\ 0 & otherwise \end{array}
ight.$$

 \implies To study "how Y depends on X_1, \ldots, X_K ?" (*Regression Analysis*)

"Different Coding"? (parameter interpretation!)

Something further

For example, a study with response Y and one explanatory varialbe "education" (\leq high school, college, and postgraduate): a One-Factor Study.

(i) One-Factor ANOVA Model: factor "education" with I = 3: $\sum_{i} \alpha_{i} = 0, i = 1, 2, 3 \text{ and } j = 1, \dots, n_{i}$

$$Y_{ij} = \mu_i + \epsilon_{ij} = \mu + \alpha_i + \epsilon_{ij}$$

(ii) Using the dummy variables X_1 and X_2 :

$$X_1 = \left\{ egin{array}{ccc} 1 & HighSchool \ 0 & otherwise \end{array}
ight. X_2 = \left\{ egin{array}{ccc} 1 & College \ 0 & otherwise \end{array}
ight.$$

 \implies Linear Regression Model: $k = 1, \ldots, n$

$$Y_k = \beta_0 + \beta_1 X_{1k} + \beta_2 X_{2k} + \epsilon_k$$

The two models should be equivalent:

$$\begin{cases} \beta_0 = \mu_3 = \mu + \alpha_3 \\ \beta_1 = \mu_1 - \mu_3 = \alpha_1 - \alpha_3 \\ \beta_2 = \mu_2 - \mu_3 = \alpha_2 - \alpha_3 \end{cases}$$

(iii) An alternative coding:

$$Z_1 = \left\{ egin{array}{ccc} 1 & \textit{HighSchool} \ -1 & \textit{otherwise} \end{array}
ight. Z_2 = \left\{ egin{array}{ccc} 1 & \textit{College} \ -1 & \textit{otherwise} \end{array}
ight.$$

 \implies Linear Regression Model: $k = 1, \dots, n$

$$Y_k = \gamma_0 + \gamma_1 Z_{1k} + \gamma_2 Z_{2k} + \epsilon_k$$

Thus,

$$\begin{cases} \mu_{1} = \mu + \alpha_{1} = \gamma_{0} + \gamma_{1} \\ \mu_{2} = \mu + \alpha_{2} = \gamma_{0} + \gamma_{2} \\ \mu_{3} = \mu + \alpha_{3} = \gamma_{0} - \gamma_{1} - \gamma_{2} \end{cases}$$

$$\mu=\gamma_0; \alpha_1=\gamma_1; \alpha_2=\gamma_2; \alpha_3=-\gamma_1-\gamma_2$$

For another example, to consider how Y is associted with Factors A and B: Factor A with 3 levels, Factor B with 4 levels, n_{ij} can be different.

"Two-Factor Study with Unbalanced Data"!

- ▶ 3 1 dummy variables for Factor A: X_{A1}, X_{A2}; 4 1 dummy variables for Factor B: X_{B1}, X_{B2}, X_{B3}
- Consider a multiple linear regression model

$$Y = \beta_0 + \beta_1 X_{A1} + \beta_2 X_{A2} + \gamma_1 X_{B1} + \gamma_2 X_{B2} + \gamma_3 X_{B3} + \epsilon$$

or a regression model with cross-product terms

$$Y = \beta_0 + \beta_1 X_{A1} + \ldots + \gamma_3 X_{B3} + \phi_1 X_{A1} X_{B1} + \ldots + \epsilon$$

Balanced data type is not required in the regression analysis.

3.2.3D Discussion

What does a regression analysis do?

Variable selection, model selection in regression analysis

What if Y is categorical?
 ⇒ Generalized Linear Models. Categorical Data Analysis

What if E(Y|X) is not specified into a linear form, or a parametric form?

Model checking in (linear) regression analysis
 What if Y₁,..., Y_n are not indpt?
 e.g. they're market prices of a stock recorded on days 1, 2, ...,
 n? ⇒ Time Series: how to deal with?

What will we study next?

Part 1. Introduction and Review (Chp 1-5)

Part 2. Basic Statistical Inference (Chp 6-9)

Part 3. Important Topics in Statistics (Chp 10-13)
3.1A One-Factor Analysis of Variance (Chp 10)
3.1B Multi-Factor ANOVA (Chp 11)
3.2A Simple Linear Regression Analysis (Chp 12)
3.2B More on Regression (Chp 13)

Part 4. Further Topics (Selected from Chp 14-16)
4.1 Distribution-Free Procedures (Chp15.1, 15.2)
4.2 Quality Control Methods (Chp16.1, 16.2, 16.3)