What to do today (March 24, 2023)?

Part 3. Important Topics in Statistics (Chp 10-13)
 §3.1. Analysis of Variance (ANOVA, Chp 10-11)
 §3.2. Introduction to Regression Analysis (Chp 12-13)
 §3.2.1 Introduction
 §3.2.2 Simple Linear Regression (Chp 12)
 §3.2.3 More Advanced Topics (Chp 13)
 3.2.3A Multiple linear regression
 3.2.3B Regression with transformed variables
 3.2.3C Regression with categorical predictors
 3.2.3D Discussion
 3.2.3E A Comprehensive Example

Some Logistics.

- Homework 9 has been assigned. It's due on Monday March 27.
- The remaining Midterm 2 papers are with Joan Hu.

3.2.3B Regression with transformed variables

Goal. to establish how Y depends on X_{1}, \ldots, X_{K}

- always linear relationship?

Examples ...

- $Y \in(0, \infty): \ln Y=\beta_{0}+\beta_{1} X+\epsilon$
- Polynominal regression: $Y=\beta_{0}+\beta_{1} X+\beta_{2} X^{2}+\epsilon$
- Relationship with two predictors (interaction):

$$
Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{12} X_{1} X_{2}+\epsilon
$$

- more examples in Table 13.1 of the textbook

In general,

$g(Y)=\beta_{0}+\beta_{1} h_{1}\left(X_{1}\right)+\ldots+\beta_{k} h_{K}\left(X_{K}\right)+\epsilon$.

$$
\Longrightarrow Y^{*}=\beta_{0}+\beta_{1} X_{1}^{*}+\ldots+\beta_{K} X_{K}^{*}+\epsilon
$$

with $Y^{*}=g(Y) ; X_{1}^{*}=h_{1}\left(X_{1}\right), \ldots, X_{K}^{*}=h_{K}\left(X_{K}\right)$.
$\Longrightarrow A$ strategy of conducting nonlinear regression analysis by linear regression analysis (General Linear Regression Analysis)

3.2.3C Regression with categorical predictors

What if an explanatory variable in the regression is qualitative?

- Introducing "dummy" variables to indicate the categories. For example,
- "predictor" = gender: female vs male. Define

$$
X= \begin{cases}1 & \text { male } \\ 0 & \text { female }\end{cases}
$$

- "predictor" =color: red vs yellow vs blue. Define

$$
X_{1}=\left\{\begin{array}{ll}
1 & \text { red } \\
0 & \text { otherwise }
\end{array} \quad X_{2}= \begin{cases}1 & \text { yellow } \\
0 & \text { otherwise }\end{cases}\right.
$$

\Longrightarrow To study "how Y depends on X_{1}, \ldots, X_{K} ?" (Regression Analysis)

- "Different Coding"? (parameter interpretation!)

Something further

For example, a study with response Y and one explanatory varialbe "education" (\leq high school, college, and postgraduate): a One-Factor Study.
(i) One-Factor ANOVA Model: factor "education" with $I=3$:
$\sum_{i} \alpha_{i}=0, i=1,2,3$ and $j=1, \ldots, n_{i}$

$$
Y_{i j}=\mu_{i}+\epsilon_{i j}=\mu+\alpha_{i}+\epsilon_{i j}
$$

(ii) Using the dummy variables X_{1} and X_{2} :

$$
X_{1}=\left\{\begin{array}{ll}
1 & \text { HighSchool } \\
0 & \text { otherwise }
\end{array} \quad X_{2}= \begin{cases}1 & \text { College } \\
0 & \text { otherwise }\end{cases}\right.
$$

\Longrightarrow Linear Regression Model: $k=1, \ldots, n$

$$
Y_{k}=\beta_{0}+\beta_{1} X_{1 k}+\beta_{2} X_{2 k}+\epsilon_{k}
$$

The two models should be equivalent:

$$
\left\{\begin{array}{l}
\beta_{0}=\mu_{3}=\mu+\alpha_{3} \\
\beta_{1}=\mu_{1}-\mu_{3}=\alpha_{1}-\alpha_{3} \\
\beta_{2}=\mu_{2}-\mu_{3}=\alpha_{2}-\alpha_{3}
\end{array}\right.
$$

(iii) An alternative coding:

$$
Z_{1}=\left\{\begin{array}{ll}
1 & \text { HighSchool } \\
-1 & \text { otherwise }
\end{array} \quad Z_{2}= \begin{cases}1 & \text { College } \\
-1 & \text { otherwise }\end{cases}\right.
$$

\Longrightarrow Linear Regression Model: $k=1, \ldots, n$

$$
Y_{k}=\gamma_{0}+\gamma_{1} Z_{1 k}+\gamma_{2} Z_{2 k}+\epsilon_{k}
$$

Thus,

$$
\left\{\begin{array}{l}
\mu_{1}=\mu+\alpha_{1}=\gamma_{0}+\gamma_{1} \\
\mu_{2}=\mu+\alpha_{2}=\gamma_{0}+\gamma_{2} \\
\mu_{3}=\mu+\alpha_{3}=\gamma_{0}-\gamma_{1}-\gamma_{2}
\end{array}\right.
$$

$$
\mu=\gamma_{0} ; \alpha_{1}=\gamma_{1} ; \alpha_{2}=\gamma_{2} ; \alpha_{3}=-\gamma_{1}-\gamma_{2}
$$

For another example, to consider how Y is associted with Factors A and B: Factor A with 3 levels, Factor B with 4 levels, $n_{i j}$ can be different.
"Two-Factor Study with Unbalanced Data"!

- 3-1 dummy variables for Factor A: $X_{A 1}, X_{A 2} ; 4-1$ dummy variables for Factor $B: X_{B 1}, X_{B 2}, X_{B 3}$
- Consider a multiple linear regression model

$$
Y=\beta_{0}+\beta_{1} X_{A 1}+\beta_{2} X_{A 2}+\gamma_{1} X_{B 1}+\gamma_{2} X_{B 2}+\gamma_{3} X_{B 3}+\epsilon
$$

or a regression model with cross-product terms

$$
Y=\beta_{0}+\beta_{1} X_{A 1}+\ldots+\gamma_{3} X_{B 3}+\phi_{1} X_{A 1} X_{B 1}+\ldots+\epsilon
$$

Balanced data type is not required in the regression analysis.

3.2.3D Discussion

- What does a regression analysis do?
- Variable selection, model selection in regression analysis
- What if Y is categorical? \Longrightarrow Generalized Linear Models. Categorical Data Analysis
- What if $E(Y \mid X)$ is not specified into a linear form, or a parametric form?
- Model checking in (linear) regression analysis What if Y_{1}, \ldots, Y_{n} are not indpt?
e.g. they're market prices of a stock recorded on days $1,2, \ldots$, n ? \Longrightarrow Time Series: how to deal with?

What will we study next?

Part 1. Introduction and Review (Chp 1-5)
Part 2. Basic Statistical Inference (Chp 6-9)
Part 3. Important Topics in Statistics (Chp 10-13)
3.1A One-Factor Analysis of Variance (Chp 10)
3.1B Multi-Factor ANOVA (Chp 11)
3.2A Simple Linear Regression Analysis (Chp 12)
3.2B More on Regression (Chp 13)

Part 4. Further Topics (Selected from Chp 14-16)
4.1 Distribution-Free Procedures (Chp15.1, 15.2)
4.2 Quality Control Methods (Chp16.1, 16.2, 16.3)

