What to do today (March 28, 2023)?

Part 3. Important Topics in Statistics (Chp 10-13)

§3.1. Analysis of Variance (ANOVA, Chp 10-11)

§3.2. Introduction to Regression Analysis (Chp 12-13)

- §3.2.1 Introduction
- §3.2.2 Simple Linear Regression (Chp 12)
- §3.2.3 More Advanced Topics (Chp 13)
 - 3.2.3A Multiple linear regression
 - 3.2.3B Regression with transformed variables
 - 3.2.3C Regression with categorical predictors
 - 3.2.3D Discussion
 - 3.2.3E Comprehensive Example

Part 4. Further Topics (Selected from Chp 14-16)

§4.1 Distribution-Free Procedures (Chp15.1, 15.2)

§4.2 Quality Control Methods (Chp16.1, 16.2, 16.3)

For another example, to consider how Y is associted with Factors A and B: Factor A with 3 levels, Factor B with 4 levels, n_{ij} can be different.

"Two-Factor Study with Unbalanced Data"!

- ▶ 3 1 dummy variables for Factor A: X_{A1}, X_{A2}; 4 1 dummy variables for Factor B: X_{B1}, X_{B2}, X_{B3}
- Consider a multiple linear regression model

$$Y = \beta_0 + \beta_1 X_{A1} + \beta_2 X_{A2} + \gamma_1 X_{B1} + \gamma_2 X_{B2} + \gamma_3 X_{B3} + \epsilon$$

or a regression model with cross-product terms

$$Y = \beta_0 + \beta_1 X_{A1} + \ldots + \gamma_3 X_{B3} + \phi_1 X_{A1} X_{B1} + \ldots + \epsilon$$

Balanced data type is not required in the regression analysis.

3.2.3D Discussion

What does a regression analysis do?

Variable selection, model selection in regression analysis

What if Y is categorical?
 ⇒ Generalized Linear Models. Categorical Data Analysis

What if E(Y|X) is not specified into a linear form, or a parametric form?

Model checking in (linear) regression analysis
 What if Y₁,..., Y_n are not indpt?
 e.g. they're market prices of a stock recorded on days 1, 2, ...,
 n? ⇒ Time Series: how to deal with?

What will we study next?

Part 1. Introduction and Review (Chp 1-5)

Part 2. Basic Statistical Inference (Chp 6-9)

Part 3. Important Topics in Statistics (Chp 10-13)
3.1A One-Factor Analysis of Variance (Chp 10)
3.1B Multi-Factor ANOVA (Chp 11)
3.2A Simple Linear Regression Analysis (Chp 12)
3.2B More on Regression (Chp 13)

Part 4. Further Topics (Selected from Chp 14-16)
4.1 Distribution-Free Procedures (Chp15.1, 15.2)
4.2 Quality Control Methods (Chp16.1, 16.2, 16.3)

§4.1 Distribution-Free Procedures (Nonparametric Methods)

§4.1.1 Basic Concepts

order statistics.

Definition. Suppose X_1, \ldots, X_n are iid observations from a continuous r.v. $X \sim f(\cdot)$ with cdf $F(\cdot)$. The **order statistics** of the random sample are $X_{(1)}, X_{(2)}, \ldots, X_{(n)}$: $X_{(1)} < X_{(2)} < \ldots < X_{(n)}$.

$$egin{aligned} X_{(1)} &= ext{the smallest value of } X_1, \ldots, X_n, \ X_{(2)} &= ext{the 2nd smallest value of } X_1, \ldots, X_n, \ \ldots, \ X_{(n)} &= ext{the largest value of } X_1, \ldots, X_n. \end{aligned}$$

Distribution. $X_{(k)} \sim \frac{n!}{(k-1)!(n-k)!} F(x)^{k-1} (1 - F(x))^{n-k} f(x)$ for k = 1, ..., n.

Example 10.1 Realizations of 5 iid observations X_1, \ldots, X_5 from a population are given in the table below.

x_1	<i>x</i> ₂	<i>X</i> 3	<i>x</i> ₄	X_5
0.62	0.98	0.31	0.81	0.53

The order statistics? The rank statistics?

rank statistics.

Definition. The rank of X_k , the *k*th observation in a random sample of size *n*, is r_k such that $X_k = X_{(r_k)}$, for k = 1, ..., n.

percentiles/quantiles.

Definition. Suppose r.v. $X \sim f(\cdot)$ with a random sample X_1, \ldots, X_n .

Population percentitles: π_p is the (100*p*)th percentile of the population if $P(X \le \pi_p) = p$. That is, $\int_{-\infty}^{\pi_p} f(x) dx = p$.

Sample percentiles: Let $X_{(1)}, \ldots, X_{(n)}$ be the order statistics. Then $X_{(r)}$ is the (r/n)100th (or (r/n+1)100th) sample percentile.

e.g., If p = 0.5, the population median m is the (100p)th population percentile.

The order statistic $X_{(n+1/2)}$ is the sample median when *n* is odd; all values in between $X_{(n/2)}$ and $X_{(n/2+1)}$ are the sample median when *n* is even.

• e.g., If $X \sim N(0, 1)$, $Z_{0.95}$ is X's 95th population percentile if $P(X \le Z_{0.95}) = 0.95$.

X's right-tailed critical value $z_{0.025}$, i.e., $P(X > z_{0.025}) = 0.025$, is its (1 - 0.025)100th percentile.

empirical distribution function.

Definition. Suppose r.v. $X \sim F(\cdot)$ with a random sample X_1, \ldots, X_n . Its **empirical distribution** is defined as

$$\hat{F}_n(x) = \frac{1}{n} \# \{ X_i : X_i \le x; i = 1, \dots, n \}, x \in (-\infty, \infty).$$

That is, $\hat{F}_n(x) = 0$ if $x < X_{(1)}$; k/n, if $X_{(k)} \le x < X_{(k+1)}$ when $1 \le k \le n-1$; 1, if $x \ge X_{(n)}$.

For a fixed x,

$$\blacktriangleright E[\hat{F}_n(x)] = F(x)$$

•
$$Var[\hat{F}_n(x)] = F(x)[1 - F(x)]/n$$

• empirical distribution function. Definition. Suppose r.v. $X \sim F(\cdot)$ with a random sample X_1, \ldots, X_n . Its empirical distribution is defined as

$$\hat{F}_n(x) = \frac{1}{n} \# \{ X_i : X_i \le x; i = 1, \dots, n \}, x \in (-\infty, \infty).$$

Standard Normal Distribution

х

§4.1.2 Nonparametric Testing Procedures

§4.1.2A Binomial test: (the sign test)

► setting. r.v. X ~ f(·) with a random sample X₁,..., X_n. To test H₀ : its population median m = m₀ vs H₁ : otherwise.

▶ test statistic. $S_i = 1$ or 0 if $X_i - m_0 \ge 0$ or not.

$$S = \sum_{i=1}^{n} S_i = \#\{i : X_i - m_0 \ge 0; i = 1, \dots, n\}$$

(i) $S \sim B(n, 1/2)$ under H_0 . (ii) if $n \gg 1$, $Z = \frac{S-n/2}{\sqrt{n/4}} \sim N(0, 1)$ approximately under H_0 .

making inference.

(i) Obtain the two critical values c_1 and c_2 from the binomial table: $P_{H_0}(S > c_2) = \alpha/2$; $P_{H_0}(S < c_1) = \alpha/2$. Reject H_0 if $S_{obs} > c_2$ or $S_{obs} < c_1$. [the exact approach]

(ii) If $n \gg 1$, reject H_0 if $|Z_{obs}| > z_{\alpha/2}$. [the approximate approach]

How about to test $H_0: \pi_p = \pi_p^*$ for 0 ?

Are there any other test procedures using more information?

What will we study next?

Part 1. Introduction and Review (Chp 1-5)

Part 2. Basic Statistical Inference (Chp 6-9)

Part 3. Important Topics in Statistics (Chp 10-13)

Part 4. Further Topics (Selected from Chp 14-16) §4.1 Distribution-Free Procedures (Chp15.1, 15.2) §4.1.1 Basic Concepts §4.1.2 Nonparametric Testing Procedures §4.2 Quality Control Methods (Chp16.1, 16.2, 16.3) §4.2.1 Introduction §4.2.2 Examples of Control Charts