What to do today (Apr 11, 2023)?

- Part 1. Introduction and Review (Chp 1-5)
- Part 2. Basic Statistical Inference (Chp 6-9)
- Part 3. Important Topics in Statistics (Chp 10-13)
- Part 4. Further Topics (Selected from Chp 14-16)

To Prepare for the Final Exam

- Review A. Outline what has been studied
- Review B. Work on a few examples

Some Logistics.

- There won't be any homework.
- Please be referred to the new office hours after today (Apr 11).
- ▶ The final exam is scheduled for Apr 22 15:30, at WMC 2532.

Final Exam Preparation

Office Hours during the Final Exam Period

- Quinn Forzley: Room K10504
 Wed April 12 11:30-12:30; Mon April 17 10:00-11:00;
 Fri April 21 11:00-12:00
- Joan Hu: Room K10555
 Thu April 13 15:30-17:00; Thu April 20 15:30-17:00;
 Fri April 21 12:00-16:00; Sat April 22 12:00-14:00

Final Exam

- Time and place: Sat Apr 22 15:30, at WMC 2532
- Material to be covered: Chp 6-13, 15-16
- Close-book: each student is allowed to use one letter sized (A4) sheet of notes, two sided if needed, and one calculator during the final exam.
- Time and Place to Review the Final Exam Papers 10:00-12:00 Fri May 12, 2022; K10555 (Please have your student ID card handy to show.)

Review A. Outline what has been studied

Part 1. Introduction and Review (Chp 1-5)

basic concepts

distribution models and sampling distributions

Part 2. Basic Statistical Inference (Chp 6-9)
 point estimation

interval estimation

hypothesis testing (one-sample problem)

two-sample problem

Review A. Outline what has been studied

Part 3. Important Topics in Statistics (Chp 10-13)

- one-factor ANOVA
- two-factor ANOVA
- simple linear regression
- nonlinear and multiple regression
- Part 4. Further Topics (Selected from Chp 14-16: 15.1-2; 16.1-3)
 - nonparametrics
 - control charts

Review B. Working on A Few Examples

Quiz 2. Angela Smith with SFU believed that the median of SFU student heights is 170*cm* but her friends thought the median is lower than that. One day, Angela randomly selected 7 SFU students and found out their heights, which are listed in the following table.

observation	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>X</i> 4	<i>x</i> 5	x ₆	<i>x</i> 7
height (cm)	177.8	163.8	152.5	157.5	152.7	167.8	184.2
x – 170	7.8	-6.2	-17.5	-12.5	-17.3	-2.2	14.2

- What are the rank statistics of the observations x₁,..., x₇ in the table?
- Use two procedures with Angela's data to test the hypotheses H₀: m = 170 vs H₁: m < 170 at the level of significance α = .05.</p>

Reminder: For each of the tests, write down (i) your assumptions, (ii) test statistic and its (approximate) distribution, and (iii) your conclusion.

Review B. Working on A Few Examples Example. Textbook Exercise Section 12.2 #29 gives the following data,

Example. Textbook Exercise Section 12.2 #29 gives the following data, in which the variables of interest are x = commuting distance, and y = commuting time.

Data Set	А		В		С		
	х	у	х	У	х	у	
	15	42	5	16	5	8	
	16	35	10	32	10	16	
	17	45	15	44	15	22	
	18	43	20	45	20	23	
	19	49	25	63	25	31	
	20	46	50	115	50	60	

Question (i). Suppose rv Y is of the primary interest with the above independent observations on it.

- (i.1) Give the order and rank statistics of Y's observations in Data Set A and the sample median.
- (i.2) Assume Y's observations are n = 18 iid from the population.

• Give the MM estimators of $\mu = E(Y)$ and $\sigma^2 = V(Y)$.

- If $Y \sim \frac{1}{\theta} e^{-y/\theta}$ for y > 0 with $\theta > 0$, derive the MLE of θ with the given data.
- If $Y \sim N(\mu, \sigma^2)$, give an approximate 95% CI for μ .

- (i.3) How about to test whether the observations on Y in Data Set A and the ones in Data Set B are from the same population?
 - Assume $Y_A \sim (\mu_A, \sigma_A^2)$ and $Y_B \sim (\mu_B, \sigma_B^2)$.
 - If the two sets are indpt? To test on $H_0: \mu_A = \mu_B$ if $\sigma_A = \sigma_B$. or To test on $H_0: \sigma_A = \sigma_B$ first, and then to test on $H_0: \mu_A = \mu_B$ if $\sigma_A = \sigma_B$.
 - If not sure about whether the two sets are indpt, but the data are in pairs, {(y_{Ai}, y_{Bi}) : i = 1,...,6}?
 - If not to assume Y_A and Y_B's distributions, how to test on whether they have the same distribution?
- (i.4) How about to check whether the observations on Y in the three Data Set are from the same populations? Assume Y_A ~ (μ_A, σ²), Y_B ~ (μ_B, σ²), and Y_C ~ (μ_C, σ²).
 - ► To test on H₀ : µ_A = µ_B = µ_C vs H₁ : otherwise by one-factor ANOVA?

 (i.5) What if the data were collected in the following way? Assume the observations are ringedt and follow normal distn.

Day Type	-	٦		Б	,	-	
Weather	х	у	х	У	х	У	
sunny	15	42	5	16	5	8	
	16	35	10	32	10	16	
	17	45	15	44	15	22	
rainy	18	43	20	45	20	23	
	19	49	25	63	25	31	
	20	16	FO	115	50	60	

Are commuting times associated with weather and/or type of day?

• Modeling:
$$Y_{ijk} = \mu_0 + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \epsilon_{ijk}$$
 with $\epsilon_{ijk} \sim N(0, \sigma^2)$ iid:

for i = 1, 2 for weather type sunny, rainy, j = 1, 2, 3 for day-type A, B, C, and k = 1, 2, 3 for the 3 records of the commuting times in each of the weather-type and day-type combinations.

Variation Source	Df	Sum Sq	Mean Sq	F value	Pr(>F)
day-type	2	2058.3	1029.17	3.1150	0.08135
weather	1	2568.1	2568.06	7.7728	0.01641
interaction	2	1105.4	552.72	1.6729	0.22863
Residuals	12	3964.7	330.39		

 $\hat{\sigma}^2 = 330.39$ and $R^2 = 1 - SS_{res}/SS_{total} = 0.591$.

Two-factor ANOVA?

Question (ii). What if to study how Y depends on X, the commuting distance?

- the simple linear regression model: y_i = β₀ + β₁x_i + ε_i for i = 1,..., 18 indpt, and with E(ε_i) = 0 and V(ε_i) = σ².
- ► LSE: $\hat{\beta}_1 = S_{XY} / S_{XX} = 1.588$, $\hat{\beta}_0 = \bar{y} \hat{\beta}_1 \bar{X} = 9.517$, and $\hat{\sigma}^2 = 195.8$.

(ii) cont'd

- Provided $\epsilon_i \sim N(0, \sigma^2)$,
 - ▶ 95% CI of β_1 ? 1.588 ± 1.96 * 0.2742, \implies (1.05, 1.85).
 - ► Test on H_0 : $\beta_1 = 0$ vs H_1 : $\beta_1 > 0$ with $Z_{obs} = \hat{\beta}_1 / 0.2742 = 5.791$, \implies strong evidence against H_0 .
 - How about to estimate E(Y|X = 60)?
 - How about to predict for Y when X = 60?
- Model checking using residuals e_i = y_i ŷ_i for i = 1,..., 18? R² = 0.657
- Althernative models?

Good luck on your final exam.

Thank you much for your participation in STAT285!