What to do today (Apr 11, 2023)?

Part 1. Introduction and Review (Chp 1-5)
Part 2. Basic Statistical Inference (Chp 6-9)
Part 3. Important Topics in Statistics (Chp 10-13)
Part 4. Further Topics (Selected from Chp 14-16)
To Prepare for the Final Exam

- Review A. Outline what has been studied
- Review B. Work on a few examples

Some Logistics.

- There won't be any homework.
- Please be referred to the new office hours after today (Apr 11).
- The final exam is scheduled for Apr 22 15:30, at WMC 2532.

Final Exam Preparation

- Office Hours during the Final Exam Period
- Quinn Forzley: Room K10504

Wed April 12-11:30-12:30; Mon April 17-10:00-11:00;
Fri April 21 - 11:00-12:00

- Joan Hu: Room K10555

Thu April 13-15:30-17:00; Thu April 20-15:30-17:00;
Fri April 21 -12:00-16:00; Sat April 22 - 12:00-14:00

- Final Exam
- Time and place: Sat Apr 22 15:30, at WMC 2532
- Material to be covered: Chp 6-13, 15-16
- Close-book: each student is allowed to use one letter sized (A4) sheet of notes, two sided if needed, and one calculator during the final exam.
- Time and Place to Review the Final Exam Papers 10:00-12:00 Fri May 12, 2022; K10555 (Please have your student ID card handy to show.)

Review A. Outline what has been studied

- Part 1. Introduction and Review (Chp 1-5)
- basic concepts
- distribution models and sampling distributions
- Part 2. Basic Statistical Inference (Chp 6-9)
- point estimation
- interval estimation
- hypothesis testing (one-sample problem)
- two-sample problem

Review A. Outline what has been studied

- Part 3. Important Topics in Statistics (Chp 10-13)
- one-factor ANOVA
- two-factor ANOVA
- simple linear regression
- nonlinear and multiple regression
- Part 4. Further Topics (Selected from Chp 14-16: 15.1-2; 16.1-3)
- nonparametrics
- control charts

Review B. Working on A Few Examples

Quiz 2. Angela Smith with SFU believed that the median of SFU student heights is 170 cm but her friends thought the median is lower than that. One day, Angela randomly selected 7 SFU students and found out their heights, which are listed in the following table.

observation	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}
height (cm)	177.8	163.8	152.5	157.5	152.7	167.8	184.2
$x-170$	7.8	-6.2	-17.5	-12.5	-17.3	-2.2	14.2

- What are the rank statistics of the observations x_{1}, \ldots, x_{7} in the table?
- Use two procedures with Angela's data to test the hypotheses $H_{0}: m=170$ vs $H_{1}: m<170$ at the level of significance $\alpha=.05$.

Reminder: For each of the tests, write down (i) your assumptions, (ii) test statistic and its (approximate) distribution, and (iii) your conclusion.

Review B. Working on A Few Examples

Example. Textbook Exercise Section 12.2 \#29 gives the following data, in which the variables of interest are $x=$ commuting distance, and $y=$ commuting time.

Data Set	A		B		C	
	x	y	x	y	x	
	15	42	5	16	5	
16	35	10	32	10	16	
17	45	15	44	15	22	
18	43	20	45	20	23	
19	49	25	63	25	31	
20	46	50	115	50	60	

Question (i). Suppose rv Y is of the primary interest with the above independent observations on it.

- (i.1) Give the order and rank statistics of Y 's observations in Data Set A and the sample median.
- (i.2) Assume Y 's observations are $n=18$ iid from the population.
- Give the MM estimators of $\mu=E(Y)$ and $\sigma^{2}=V(Y)$.
- If $Y \sim \frac{1}{\theta} e^{-y / \theta}$ for $y>0$ with $\theta>0$, derive the MLE of θ with the given data.
\checkmark If $Y \sim N\left(\mu, \sigma^{2}\right)$, give an approximate $95 \% \mathrm{Cl}$ for μ.
- (i.3) How about to test whether the observations on Y in Data Set A and the ones in Data Set B are from the same population?
- Assume $Y_{A} \sim\left(\mu_{A}, \sigma_{A}^{2}\right)$ and $Y_{B} \sim\left(\mu_{B}, \sigma_{B}^{2}\right)$.
- If the two sets are indpt?

To test on $H_{0}: \mu_{A}=\mu_{B}$ if $\sigma_{A}=\sigma_{B}$. or To test on $H_{0}: \sigma_{A}=\sigma_{B}$ first, and then to test on $H_{0}: \mu_{A}=\mu_{B}$ if $\sigma_{A}=\sigma_{B}$.

- If not sure about whether the two sets are indpt, but the data are in pairs, $\left\{\left(y_{A i}, y_{B i}\right): i=1, \ldots, 6\right\}$?
- If not to assume Y_{A} and Y_{B} 's distributions, how to test on whether they have the same distribution?
- (i.4) How about to check whether the observations on Y in the three Data Set are from the same populations? Assume $Y_{A} \sim\left(\mu_{A}, \sigma^{2}\right), Y_{B} \sim\left(\mu_{B}, \sigma^{2}\right)$, and $Y_{C} \sim\left(\mu_{C}, \sigma^{2}\right)$.
- To test on $H_{0}: \mu_{A}=\mu_{B}=\mu_{C}$ vs H_{1} : otherwise by one-factor ANOVA?
(i.5) What if the data were collected in the following way? Assume the observations are Typedt and follow normal distn.

Weather	x	y	x	y	x	y
sunny	15	42	5	16	5	8
	16	35	10	32	10	16
	17	45	15	44	15	22
rainy	18	43	20	45	20	23
	19	49	25	63	25	31

- Are commuting times associated with weather and/or type of day?
- Modeling: $Y_{i j k}=\mu_{0}+\alpha_{i}+\beta_{j}+(\alpha \beta)_{i j}+\epsilon_{i j k}$ with $\epsilon_{i j k} \sim N\left(0, \sigma^{2}\right)$ iid: for $i=1,2$ for weather type sunny, rainy, $j=1,2,3$ for day-type A, B, C, and $k=1,2,3$ for the 3 records of the commuting times in each of the weather-type and day-type combinations.
- Two-factor ANOVA?

Variation Source	Df	Sum Sq	Mean Sq	F value	$\operatorname{Pr}(>F)$
day-type	2	2058.3	1029.17	3.1150	0.08135
weather	1	2568.1	2568.06	7.7728	0.01641
interaction	2	1105.4	552.72	1.6729	0.22863
Residuals	12	3964.7	330.39		

$$
\hat{\sigma}^{2}=330.39 \text { and } R^{2}=1-S S_{\text {res }} / S S_{\text {total }}=0.591
$$

Question (ii). What if to study how Y depends on X, the commuting distance?

- the simple linear regression model: $y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}$ for $i=1, \ldots, 18$ indpt, and with $E\left(\epsilon_{i}\right)=0$ and $V\left(\epsilon_{i}\right)=\sigma^{2}$.
- LSE: $\hat{\beta}_{1}=S_{X Y} / S_{X X}=1.588, \hat{\beta}_{0}=\bar{y}-\hat{\beta}_{1} \bar{X}=9.517$, and $\hat{\sigma}^{2}=195.8$.
- (ii) cont'd
- Provided $\epsilon_{i} \sim N\left(0, \sigma^{2}\right)$,
$-95 \% \mathrm{Cl}$ of β_{1} ? $1.588 \pm 1.96 * 0.2742, \Longrightarrow(1.05,1.85)$.
- Test on $H_{0}: \beta_{1}=0$ vs $H_{1}: \beta_{1}>0$ with $Z_{\text {obs }}=\hat{\beta}_{1} / 0.2742=5.791, \Longrightarrow$ strong evidence against H_{0}.
- How about to estimate $E(Y \mid X=60)$?
- How about to predict for Y when $X=60$?
\rightarrow Model checking using residuals $e_{i}=y_{i}-\hat{y}_{i}$ for $i=1, \ldots, 18$? $R^{2}=0.657$
- Althernative models?

Good luck on your final exam.

Thank you much for your participation in STAT285!

