Intermediate Probability and Statistics

X. Joan Hu

Department of Statistics and Actuarial Science Simon Fraser University

Spring 2023

§1.3 Review 2 on Chp 1-5: Sampling Distributions

What to do today (Tuesday Jan 10, 2022)?

§1.1 Introduction

§1.2 Review 1 on Chp 1-5: Basic Concepts

§1.3 Review 2 on Chp 1-5: Sampling Distributions

Review 1A: Probability and Statistics

- Probability
 - definitions and properties
 - classical, frequentist, Bayesian
 - the three axioms in Kolmogorov definition and extensions
 - conditional probability and independence

$$P(A \mid B) = \frac{P(AB)}{P(B)}$$

$$A \perp B$$
 iff $P(AB) = P(A)P(B)$

Review 1A: Probability and Statistics (cont'd)

Statistics

- population vs sample
 - population: the target to make inference on
 - sample: subset of population with available information to be used to make inference
 - random sample: a set of independent identically distributed observations from the population
- descriptive statistics: functions/tables/plots of data
 - sample mean and variance, etc
 - contingency table
 - histogram, boxplot, scatterplot, etc

Review 1B: Random Variable and Probability Distribution

random variable:

$$X:S\to(-\infty,\infty)$$

discrete distributions: (probability mass function)

For example,

- b discrete uniform: $P(X = a_k) = 1/K$, a_1, \ldots, a_K .
- binomial: Bin(n, p)
- Poisson: $Poisson(\lambda)$
- continuous distributions: (probability density function)

For example,

- continuous uniform: Unif (a, b)
- ▶ normal: $N(\mu, \sigma^2)$
- ightharpoonup exponential: $NE(\lambda)$

Review 1B: Random Variable and Probability Distribution (cont'd)

cumulative distribution:

$$F(x) = P(X \le x),$$

valued in [0, 1] with $F(-\infty) = 0$ and $F(\infty) = 1$.

joint distribution

$$F(x,y) = P(X \le x, Y \le y).$$

- ightharpoonup it's $F_X(x)F_Y(y)$ iff $X\perp Y$.
- relation to pmf, pdf

Review1C: Expectation, Variance, Covariance and **Correlation**

"Did you hear about the politician who promised that, if he was elected, he'd make certain that everybody would get an above average income?"

Expectation

- definition

 - discrete r.v. X: $E(X) = \sum_{\substack{\text{all } x \\ \text{ontinuous r.v.}}} xp(x)$ continuous r.v. X: $E(X) = \int_{-\infty}^{\infty} xf(x)dx$

In general, a r.v.
$$X$$
: $E(X) = \int_{-\infty}^{\infty} x dF(x)$

properties:

$$E(aX + bY) = aE(X) + bE(Y)$$

Review1C: Expectation, Variance, Covariance and Correlation (cont'd)

- ▶ Variance: $V(X) = E(X EX)^2$
 - $V(X) = E(X^2) (EX)^2$
 - $V(aX + b) = a^2V(X)$
- **Covariance**: Cov(X, Y) = E(X EX)(Y EY)

$$Cov(X, Y) = E(XY) - (EX)(EY)$$

 $Cov(aX + b, cY + d) = acCov(X, Y)$

$$\Longrightarrow$$

$$Var(aX + bY) = a^2V(X) + b^2V(Y) + 2abCov(X, Y)$$

Review1C: Expectation, Variance, Covariance and Correlation (cont'd)

▶ Correlation Coefficient:

$$corr(X, Y) = \frac{Cov(X, Y)}{\sqrt{V(X)V(Y)}}$$

$$-1 \leq corr(X, Y) \leq 1$$

Remark: Population Quantity vs Sample Quantity

- expectation (population mean) vs sample mean
- population variance vs sample variance
- population covariance vs sample covariance

§1.3 Review 2: Sampling Distributions

Statistics and their distributions:

- statistic: a function of r.v.s. How about its distribution? to obtain it case by case.
- **Example 1**: Consider r.v. $X \sim F_X(\cdot)$, Y = g(X)'s distribution? eg, Y = 1/X with X > 0: if y > 0,

$$P(Y \le y) = P(X \ge 1/y) = 1 - F_X(1/y)$$

Example 2: Consider r.v.s. X_1 and X_2 , $Y = h(X_1, X_2)$'s distribution?

eg, if
$$X_1 \perp X_2$$
, $X_1 \sim N(\mu_1, \sigma_1^2)$ and $X_2 \sim N(\mu_2, \sigma_2^2)$:

$$Y = aX_1 + bX_2$$
: $Y \sim N(a\mu_1 + b\mu_2, a^2\sigma_1^2 + b^2\sigma_2^2)$.

Review2: Sampling Distributions (cont'd)

Example 3: Consider **iid sample** of $X \sim F_X(\cdot)$ with mean μ and variance σ^2 .

$$X_1,\ldots,X_n$$
 are independent with each other and $\sim F_X(\cdot)$

The sample mean $\bar{X} = (X_1 + \ldots + X_n)/n$'s distribution?

- \blacktriangleright $E(\bar{X}) = \mu$ and $V(\bar{X}) = \sigma^2/n$.
- ▶ If $X \sim N(\mu, \sigma^2)$, $\bar{X} \sim N(\mu, \sigma^2/n)$

What if $X \not\sim N(\mu, \sigma^2)$?

Central Limit Theorem. Provided that $X_1, ..., X_n$ are iid with mean μ and variance σ^2 .

- ► The distribution of $X_1 + ... + X_n$ is approximately $N(n\mu, n\sigma^2)$, if n >> 1.
- ▶ The distribution of \bar{X} is approximately $N(\mu, \sigma^2/n)$, if n >> 1.

To motivate the CLT, let's consider the sample mean \bar{X} of a random sample $\{X_1, \dots, X_n\}$ from the distn given in the table: E(X) = 9/4, V(X) = 11/16

1

2/16

Х

1/16

	$p_X(.)$	1/4	1/4	1/2	
Γ	2/2	3/2	4/2	5/2	6/2

5/16

2

3

4/16

4/16

n=3							
				6/3			
$p_{\bar{X}}(.)$	1/64	3/64	9/64	13/64	18/64	12/64	8/64

What is the distn of \bar{X} when n = 100?

n=2

 $p_{\bar{X}}(.)$

The histogram of \bar{X} based on $m=10^5$ repetitions: n=100

Almost N(9/4, 11/1600)!

Review2: Sampling Distributions (cont'd)

▶ Normal Distribution: $X \sim N(\mu, \sigma^2)$

▶ to calculate P(a < X < b) with any given a, b?

to standardize r.v. X:

$$Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$$

Denote $P(Z \le z)$ by $\Phi(z)$.

$$P(a < X < b) = P(\frac{a - \mu}{\sigma} < Z < \frac{b - \mu}{\sigma})$$
$$= \Phi(\frac{b - \mu}{\sigma}) - \Phi(\frac{a - \mu}{\sigma})$$

How to obtain the values of $\Phi(\cdot)$?

- ► The standard normal distribution table: Table A.3 Standard Normal Curve Areas
- ► Alternatively, using R function: pnorm(q, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)

Review2: Sampling Distributions (cont'd)

Some distributions derived from $N(\mu, \sigma^2)$

Chi-Square Distribution. Suppose Z_1, \ldots, Z_K are i.i.d. with N(0,1). Let W be $W=Z_1^2+\ldots+Z_K^2$. The distribution of W is the chi-square distribution with the degrees of freedom (df) K, denoted by $W \sim \chi^2(K)$.

Properties:

- (i) E(W) = K.
- (ii) V(W) = 2K.
- (iii) If $W_1 \sim \chi^2(K_1)$, $W_2 \sim \chi^2(K_2)$ and W_1 and W_2 are independent, then $W_1 + W_2 \sim \chi^2(K_1 + K_2)$. (why?)

How to obtain relevant values of $\chi^2(\cdot)$?

- λ^2 -distribution table: Table A.7 Critical Values of Chi-Square Distribution
- Alternatively, using R function:
 pchisq(q, df, ncp = 0, lower.tail = TRUE, log.p =
 FALSE)

Student's t-Distribution. Suppose $Z \sim N(0,1)$ and $W \sim \chi^2(K)$, and $Z \perp W$. Let T be

$$T = \frac{Z}{\sqrt{W/K}}.$$

The distribution of T is the t-distribution with K degrees of freedom (df): $T \sim t(K)$. It was initially derived by Gosset (1908).

Properties:

- (i) E(T) = 0.
 - (ii) V(T) = K/(K-2), if K > 2.
 - (iii) If $T \sim t(K)$ with K >> 1, T's distribution is approximately N(0,1). That is $t(\infty) = N(0,1)$. (why?)
- How to obtain relevant values of $t(\cdot)$?
 - ➤ Student's t-distribution table. Table A.5 Critical Values for t-Distributions
 - Alternatively, using R function:
 pt(q, df, ncp, lower.tail = TRUE, log.p = FALSE)

"Statistics is the science of learning from data."

- By processing/summarizing the data: tabulating/plotting
- By making inferences with the data, to understand uncertainties using the limited information

Statistical Thinking ("The Basic Practice of Statistics", 6th Edn, by Moore et al.)

- Data are numbers with a context.
- ▶ Where the data come from matters.
- Always look at the data.
- ▶ Beware the lurking variable.
- Variation is everywhere.
- Conclusions are not certain.

What will we do next?

- Part 1. Introduction and Review (Chp 1-5)
- Part 2. Basic Statistical Inference (Chp 6-9)
 - 2.1 Point Estimation
 - 2.2 Confidence Interval
 - 2.3 One-Sample Test
 - 2.4 Inference Based on Two-Samples
- Part 3. Important Topics in Statistics (Chp 10-13)
 - 3.1 One-Factor Analysis of Variance
 - 3.2 Multi-Factor ANOVA
 - 3.3 Simple Linear Regression Analysis
 - 3.4 More on Regression
- Part 4. Further Topics (Selected from Chp 14-16)

Homework 1 is due on Monday 16 by 5:00pm.