Intermediate Probability and Statistics

X. Joan Hu
Department of Statistics and Actuarial Science
Simon Fraser University

Spring 2023

What to do today (Tuesday Jan 10, 2022)?

§1.1 Introduction
§1.2 Review 1 on Chp 1-5: Basic Concepts
§1.3 Review 2 on Chp 1-5: Sampling Distributions

Review 1A: Probability and Statistics

- Probability

- definitions and properties
- classical, frequentist, Bayesian
- the three axioms in Kolmogorov definition and extensions
- conditional probability and independence

$$
P(A \mid B)=\frac{P(A B)}{P(B)}
$$

$$
A \perp B \quad \text { iff } \quad P(A B)=P(A) P(B)
$$

Review 1A: Probability and Statistics (cont'd)

- Statistics
- population vs sample
- population: the target to make inference on
- sample: subset of population with available information to be used to make inference
- random sample: a set of independent identically distributed observations from the population
- descriptive statistics: functions/tables/plots of data
- sample mean and variance, etc
- contingency table
- histogram, boxplot, scatterplot, etc

Review 1B: Random Variable and Probability Distribution

- random variable:

$$
X: S \rightarrow(-\infty, \infty)
$$

- discrete distributions: (probability mass function)

For example,

- discrete uniform: $P\left(X=a_{k}\right)=1 / K, \quad a_{1}, \ldots, a_{k}$.
- binomial: $\operatorname{Bin}(n, p)$
- Poisson: Poisson(λ)
- continuous distributions: (probability density function)

For example,

- continuous uniform: Unif (a, b)
- normal: $N\left(\mu, \sigma^{2}\right)$
- exponential: $N E(\lambda)$

Review 1B: Random Variable and Probability Distribution (cont'd)

- cumulative distribution:

$$
F(x)=P(X \leq x)
$$

valued in $[0,1]$ with $F(-\infty)=0$ and $F(\infty)=1$.

- joint distribution

$$
F(x, y)=P(X \leq x, Y \leq y)
$$

- it's $F_{X}(x) F_{Y}(y)$ iff $X \perp Y$.
- relation to pmf, pdf

Review1C: Expectation, Variance, Covariance and Correlation

"Did you hear about the politician who promised that, if he was elected, he'd make certain that everybody would get an above average income?"

- Expectation
- definition
- discrete r.v. $X: E(X)=\sum_{\text {all }_{\infty}} x p(x)$
- continuous r.v. X : $E(X)=\int_{-\infty}^{\infty} x f(x) d x$

In general, a r.v. $X: E(X)=\int_{-\infty}^{\infty} x d F(x)$

- properties:

$$
E(a X+b Y)=a E(X)+b E(Y)
$$

Review1C: Expectation, Variance, Covariance and Correlation (cont'd)

- Variance: $V(X)=E(X-E X)^{2}$
- $V(X)=E\left(X^{2}\right)-(E X)^{2}$
- $V(a X+b)=a^{2} V(X)$
- Covariance: $\operatorname{Cov}(X, Y)=E(X-E X)(Y-E Y)$

$$
\begin{aligned}
& \operatorname{Cov}(X, Y)=E(X Y)-(E X)(E Y) \\
& \operatorname{Cov}(a X+b, c Y+d)=a c \operatorname{Cov}(X, Y)
\end{aligned}
$$

$$
\operatorname{Var}(a X+b Y)=a^{2} V(X)+b^{2} V(Y)+2 a b \operatorname{Cov}(X, Y)
$$

Review1C: Expectation, Variance, Covariance and Correlation (cont'd)

- Correlation Coefficient:

$$
\operatorname{corr}(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sqrt{V(X) V(Y)}}
$$

$-1 \leq \operatorname{corr}(X, Y) \leq 1$

Remark: Population Quantity vs Sample Quantity

- expectation (population mean) vs sample mean
- population variance vs sample variance
- population covariance vs sample covariance

§1.3 Review 2: Sampling Distributions

Statistics and their distributions:

- statistic: a function of r.v.s.

How about its distribution?
to obtain it case by case.

Example 1: Consider r.v. $X \sim F_{X}(\cdot), Y=g(X)$'s distribution? eg, $Y=1 / X$ with $X>0$: if $y>0$,

$$
P(Y \leq y)=P(X \geq 1 / y)=1-F_{X}(1 / y)
$$

Example 2: Consider r.v.s. X_{1} and $X_{2}, Y=h\left(X_{1}, X_{2}\right)$'s distribution?

$$
\begin{aligned}
& \text { eg, if } X_{1} \perp X_{2}, X_{1} \sim N\left(\mu_{1}, \sigma_{1}^{2}\right) \text { and } X_{2} \sim N\left(\mu_{2}, \sigma_{2}^{2}\right) \text { : } \\
& \quad Y=a X_{1}+b X_{2}: \quad Y \sim N\left(a \mu_{1}+b \mu_{2}, a^{2} \sigma_{1}^{2}+b^{2} \sigma_{2}^{2}\right) .
\end{aligned}
$$

Review2: Sampling Distributions (cont'd)

Example 3: Consider iid sample of $X \sim F_{X}(\cdot)$ with mean μ and variance σ^{2}.
X_{1}, \ldots, X_{n} are independent with each other and $\sim F_{X}(\cdot)$
The sample mean $\bar{X}=\left(X_{1}+\ldots+X_{n}\right) / n$'s distribution?

- $E(\bar{X})=\mu$ and $V(\bar{X})=\sigma^{2} / n$.
- If $X \sim N\left(\mu, \sigma^{2}\right), \bar{X} \sim N\left(\mu, \sigma^{2} / n\right)$

What if $X \not \nsim N\left(\mu, \sigma^{2}\right)$?

Central Limit Theorem. Provided that X_{1}, \ldots, X_{n} are iid with mean μ and variance σ^{2}.

- The distribution of $X_{1}+\ldots+X_{n}$ is approximately $N\left(n \mu, n \sigma^{2}\right)$, if $n \gg 1$.
- The distribution of \bar{X} is approximately $N\left(\mu, \sigma^{2} / n\right)$, if $n \gg 1$.

To motivate the CLT, let's consider the sample mean \bar{X} of a random sample $\left\{X_{1}, \cdots, X_{n}\right\}$ from the distn given in the table: $E(X)=9 / 4$, $V(X)=11 / 16$

\times	1	2	3
$p_{X}()$.	$1 / 4$	$1 / 4$	$1 / 2$

$\mathbf{n}=\mathbf{2}$					
$\overline{\mathbf{x}}$	$2 / 2$	$3 / 2$	$4 / 2$	$5 / 2$	$6 / 2$
$p_{\bar{X}}()$.	$1 / 16$	$2 / 16$	$5 / 16$	$4 / 16$	$4 / 16$

$\mathbf{n}=\mathbf{3}$							
\bar{x}	$3 / 3$	$4 / 3$	$5 / 3$	$6 / 3$	$7 / 3$	$8 / 3$	$9 / 3$
$p_{\bar{x}}()$.	$1 / 64$	$3 / 64$	$9 / 64$	$13 / 64$	$18 / 64$	$12 / 64$	$8 / 64$

What is the distn of \bar{X} when $n=100$?

The histogram of \bar{X} based on $m=10^{5}$ repetitions:
$\mathrm{n}=100$

Almost $N(9 / 4,11 / 1600)$!

Review2: Sampling Distributions (cont'd)

- Normal Distribution: $X \sim N\left(\mu, \sigma^{2}\right)$
to calculate $P(a<X<b)$ with any given a, b ?
to standardize r.v. X :

$$
Z=\frac{X-\mu}{\sigma} \sim N(0,1)
$$

Denote $P(Z \leq z)$ by $\Phi(z)$.

$$
\begin{aligned}
P(a<X<b) & =P\left(\frac{a-\mu}{\sigma}<Z<\frac{b-\mu}{\sigma}\right) \\
& =\Phi\left(\frac{b-\mu}{\sigma}\right)-\Phi\left(\frac{a-\mu}{\sigma}\right)
\end{aligned}
$$

How to obtain the values of $\Phi(\cdot)$?

- The standard normal distribution table: Table A. 3 Standard Normal Curve Areas
- Alternatively, using R function:
pnorm(q, mean $=0$, sd $=1$, lower.tail = TRUE, log.p $=$ FALSE)

Review2: Sampling Distributions (cont'd)

- Some distributions derived from $N\left(\mu, \sigma^{2}\right)$

Chi-Square Distribution. Suppose Z_{1}, \ldots, Z_{K} are i.i.d. with $N(0,1)$. Let W be $W=Z_{1}^{2}+\ldots+Z_{K}^{2}$. The distribution of W is the chi-square distribution with the degrees of freedom (df) K, denoted by $W \sim \chi^{2}(K)$.

Properties:

(i) $\mathrm{E}(W)=K$.
(ii) $\mathrm{V}(W)=2 K$.
(iii) If $W_{1} \sim \chi^{2}\left(K_{1}\right), W_{2} \sim \chi^{2}\left(K_{2}\right)$ and W_{1} and W_{2} are independent, then $W_{1}+W_{2} \sim \chi^{2}\left(K_{1}+K_{2}\right)$. (why?)
How to obtain relevant values of $\chi^{2}(\cdot)$?

- χ^{2}-distribution table: Table A. 7 Critical Values of Chi-Square Distribution
- Alternatively, using R function:
pchisq(q, df, ncp $=0$, lower.tail $=$ TRUE, log.p $=$ FALSE)

Student's t-Distribution. Suppose $Z \sim N(0,1)$ and $W \sim \chi^{2}(K)$, and $Z \perp W$. Let T be

$$
T=\frac{Z}{\sqrt{W / K}}
$$

The distribution of T is the t-distribution with K degrees of freedom (df): $T \sim t(K)$. It was initially derived by Gosset (1908).

Properties:

(i) $\mathrm{E}(T)=0$.
(ii) $\mathrm{V}(T)=K /(K-2)$, if $K>2$.
(iii) If $T \sim t(K)$ with $K \gg 1, T$'s distribution is approximately $N(0,1)$. That is $t(\infty)=N(0,1)$. (why?)
How to obtain relevant values of $t(\cdot)$?

- Student's t-distribution table. Table A. 5 Critical Values for t-Distributions
- Alternatively, using R function:

```
pt(q, df, ncp, lower.tail = TRUE, log.p = FALSE)
```

- By processing/summarizing the data: tabulating/plotting
- By making inferences with the data, to understand uncertainties using the limited information

Statistical Thinking ("The Basic Practice of Statistics", 6th Edn, by Moore et al.)

- Data are numbers with a context.
- Where the data come from matters.
- Always look at the data.
- Beware the lurking variable.
- Variation is everywhere.
- Conclusions are not certain.

What will we do next?

Part 1. Introduction and Review (Chp 1-5)
Part 2. Basic Statistical Inference (Chp 6-9)
2.1 Point Estimation
2.2 Confidence Interval
2.3 One-Sample Test
2.4 Inference Based on Two-Samples

Part 3. Important Topics in Statistics (Chp 10-13)
3.1 One-Factor Analysis of Variance
3.2 Multi-Factor ANOVA
3.3 Simple Linear Regression Analysis
3.4 More on Regression

Part 4. Further Topics (Selected from Chp 14-16)

Homework 1 is due on Monday 16 by 5:00pm.

