Intermediate Probability and Statistics

X. Joan Hu

Department of Statistics and Actuarial Science Simon Fraser University

Spring 2023

Department of Statistics and Actuarial Science Simon Fraser University

What to do today (Friday Jan 13, 2023)?

§1.1 Introduction

§1.2 Review 1 on Chp 1-5: Basic Concepts

§1.3 Review 2 on Chp 1-5: Sampling Distributions

§2.1 Point Estimation §2.1.1 Some General Concepts

§1.3 Review 2: Sampling Distributions

Statistics and their distributions:

statistic: a function of r.v.s. Its distribution is obtained case by case.

Example 3: Consider **iid sample** of $X \sim F_X(\cdot)$ with mean μ and variance σ^2 .

 X_1,\ldots,X_n are independent with each other and $\sim F_X(\cdot)$

The sample mean $\bar{X} = (X_1 + \ldots + X_n)/n$'s distribution?

•
$$E(\bar{X}) = \mu$$
 and $V(\bar{X}) = \sigma^2/n$.
• If $X \sim N(\mu, \sigma^2)$, $\bar{X} \sim N(\mu, \sigma^2/n)$

Central Limit Theorem. Provided that X_1, \ldots, X_n are iid with mean μ and variance σ^2 .

The distribution of X₁ + ... + X_n is approximately N(nμ, nσ²), if n >> 1.

The distribution of \bar{X} is approximately $N(\mu, \sigma^2/n)$, if $n \gg 1$. To motivate the CLT, let's consider the sample mean \bar{X} of a random sample $\{X_1, \dots, X_n\}$ from the distn given in the table: E(X) = 9/4, V(X) = 11/16 What is the distn of \bar{X} when n = 100? The histogram of \bar{X} based on $m = 10^5$ repetitions: Almost N(9/4, 11/1600)!

Review2: Sampling Distributions (cont'd)

• Normal Distribution: $X \sim N(\mu, \sigma^2)$

► to calculate P(a < X < b) with any given a, b? to standardize r.v. X:

$$Z = rac{X-\mu}{\sigma} \sim N(0,1)$$

Denote $P(Z \leq z)$ by $\Phi(z)$.

$$P(a < X < b) = P(\frac{a - \mu}{\sigma} < Z < \frac{b - \mu}{\sigma})$$
$$= \Phi(\frac{b - \mu}{\sigma}) - \Phi(\frac{a - \mu}{\sigma})$$

How to obtain the values of $\Phi(\cdot)$?

- The standard normal distribution table: Table A.3 Standard Normal Curve Areas
- Alternatively, using R function: pnorm(q, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)

Review2: Sampling Distributions (cont'd)

Some distributions derived from $N(\mu, \sigma^2)$

Chi-Square Distribution. Suppose Z_1, \ldots, Z_K are i.i.d. with N(0, 1). Let W be $W = Z_1^2 + \ldots + Z_K^2$. The distribution of W is the chi-square distribution with the degrees of freedom (df) K, denoted by $W \sim \chi^2(K)$.

Properties:

(i)
$$E(W) = K$$
.
(ii) $V(W) = 2K$.
(iii) If $W_1 \sim \chi^2(K_1)$, $W_2 \sim \chi^2(K_2)$ and W_1 and W_2 are independent, then $W_1 + W_2 \sim \chi^2(K_1 + K_2)$. (why?)

How to obtain relevant values of $\chi^2(\cdot)$?

 χ²-distribution table: Table A.7 Critical Values of Chi-Square Distribution

Student's t-Distribution. Suppose $Z \sim N(0, 1)$ and $W \sim \chi^2(K)$, and $Z \perp W$. Let T be

$$T=\frac{Z}{\sqrt{W/K}}.$$

The distribution of T is the t-distribution with K degrees of freedom (df): $T \sim t(K)$. It was initially derived by Gosset (1908).

Properties:

(i)
$$E(T) = 0$$
.
(ii) $V(T) = K/(K-2)$, if $K > 2$.
(iii) If $T \sim t(K)$ with $K >> 1$, T's distribution is
approximately $N(0, 1)$. That is $t(\infty) = N(0, 1)$. (why?)

How to obtain relevant values of $t(\cdot)$?

- Student's t-distribution table. Table A.5 Critical Values for t-Distributions
- Alternatively, using R function: pt(q, df, ncp, lower.tail = TRUE, log.p = FALSE)

§2.1 Point Estimation (Chp6)

§2.1.1 Some General Concepts

2.1.1A. What does point estimation do?

Suppose r.v. $X \sim F(\cdot; \theta)$ (**population**) with unknown θ (**parameter**).

- Use the available information (data, a sample from the population) to compute a 'good guess' (point estimate) for the true value of θ
 - The formula used to obtain a point estimate is called the point estimator of θ, denoted by θ̂.
 - A point estimator is a suitable statistic: it is often referred to as a realization or an evaluation of the corresponding point estimator.

Example 2.1 (Devore 9th: p249) An automobile manufacturer has developed a new type of bumper. The manufacturer has used this bumper in a sequence of 25 controlled crashes against a wall at 10 mph, using one of its compact car models. The parameter to be estimated is p, the proportion of all such crashes that result in no damage:

p = P(no damage in a single crash).

Let X the number of crashes that result in no visible damage: X observed to be x = 15.

estimator
$$\hat{p} = \frac{X}{n}$$
; estimate $\hat{p}_{obs} = \frac{x}{n} = \frac{15}{25} = 0.60$.

Why to use X/n as \hat{p} ? $X \sim B(25, p)$, so E(X) = 25p and is approximated by the observed x = 15

an alternative solution:

Suppose iid Y_1, \ldots, Y_{25} drawn from population $Y \sim B(1, p)$, Y = 1 if no crash and = 0 if crashed.

Note
$$\sum_{i=1}^{25} Y_i = X$$
:
 $E(Y) = p = P(Y = 1)$
 $\hat{p} = \bar{Y} = \frac{1}{25}(Y_1 + \ldots + Y_{25}) = \frac{X}{25}$

Note X is observed as 15. Thus,

$$\hat{p}_{obs} = 15/25$$

What will we do next?

Part 1. Introduction and Review (Chp 1-5)

Part 2. Basic Statistical Inference (Chp 6-9)

- 2.1 Point Estimation
- 2.2 Confidence Interval

2.3 One-Sample Test

2.4 Inference Based on Two-Samples

- Part 3. Important Topics in Statistics (Chp 10-13)
 - 3.1 One-Factor Analysis of Variance
 - 3.2 Multi-Factor ANOVA
 - 3.3 Simple Linear Regression Analysis
 - 3.4 More on Regression

Part 4. Further Topics (Selected from Chp 14-16)

Remarks:

- Homework 1 is due on Monday Jan 16 by 5:00pm: please submit it via the course canvas page.
- Classroom for Tue lecture 10:30-12:20 is now AQ5006; for Mon 1st Tutorial D101, BLU10901.