Intermediate Probability and Statistics

X. Joan Hu
Department of Statistics and Actuarial Science Simon Fraser University

Spring 2023

What to do today (Friday Jan 13, 2023)?

§1.1 Introduction
§1.2 Review 1 on Chp 1-5: Basic Concepts
§1.3 Review 2 on Chp 1-5: Sampling Distributions
§2.1 Point Estimation §2.1.1 Some General Concepts

§1.3 Review 2: Sampling Distributions

Statistics and their distributions:

- statistic: a function of r.v.s. Its distribution is obtained case by case.

Example 3: Consider iid sample of $X \sim F_{X}(\cdot)$ with mean μ and variance σ^{2}.
X_{1}, \ldots, X_{n} are independent with each other and $\sim F_{X}(\cdot)$
The sample mean $\bar{X}=\left(X_{1}+\ldots+X_{n}\right) / n$'s distribution?

- $E(\bar{X})=\mu$ and $V(\bar{X})=\sigma^{2} / n$.
- If $X \sim N\left(\mu, \sigma^{2}\right), \bar{X} \sim N\left(\mu, \sigma^{2} / n\right)$

Central Limit Theorem. Provided that X_{1}, \ldots, X_{n} are iid with mean μ and variance σ^{2}.

- The distribution of $X_{1}+\ldots+X_{n}$ is approximately $N\left(n \mu, n \sigma^{2}\right)$, if $n \gg 1$.
- The distribution of \bar{X} is approximately $N\left(\mu, \sigma^{2} / n\right)$, if $n \gg 1$.

To motivate the CLT, let's consider the sample mean \bar{X} of a random sample $\left\{X_{1}, \cdots, X_{n}\right\}$ from the distn given in the table: $E(X)=9 / 4$, $V(X)=11 / 16$ What is the distn of \bar{X} when $n=100$? The histogram of \bar{X} based on $m=10^{5}$ repetitions: Almost $N(9 / 4,11 / 1600)$!
$\mathrm{n}=100$

Review2: Sampling Distributions (cont'd)

- Normal Distribution: $X \sim N\left(\mu, \sigma^{2}\right)$
to calculate $P(a<X<b)$ with any given a, b ?
to standardize r.v. X :

$$
Z=\frac{X-\mu}{\sigma} \sim N(0,1)
$$

Denote $P(Z \leq z)$ by $\Phi(z)$.

$$
\begin{aligned}
P(a<X<b) & =P\left(\frac{a-\mu}{\sigma}<Z<\frac{b-\mu}{\sigma}\right) \\
& =\Phi\left(\frac{b-\mu}{\sigma}\right)-\Phi\left(\frac{a-\mu}{\sigma}\right)
\end{aligned}
$$

How to obtain the values of $\Phi(\cdot)$?

- The standard normal distribution table: Table A. 3 Standard Normal Curve Areas
- Alternatively, using R function:
pnorm(q, mean $=0$, sd $=1$, lower.tail = TRUE, log.p $=$ FALSE)

Review2: Sampling Distributions (cont'd)

- Some distributions derived from $N\left(\mu, \sigma^{2}\right)$

Chi-Square Distribution. Suppose Z_{1}, \ldots, Z_{K} are i.i.d. with $N(0,1)$. Let W be $W=Z_{1}^{2}+\ldots+Z_{K}^{2}$. The distribution of W is the chi-square distribution with the degrees of freedom (df) K, denoted by $W \sim \chi^{2}(K)$.

Properties:

(i) $\mathrm{E}(W)=K$.
(ii) $\mathrm{V}(W)=2 K$.
(iii) If $W_{1} \sim \chi^{2}\left(K_{1}\right), W_{2} \sim \chi^{2}\left(K_{2}\right)$ and W_{1} and W_{2} are independent, then $W_{1}+W_{2} \sim \chi^{2}\left(K_{1}+K_{2}\right)$. (why?)
How to obtain relevant values of $\chi^{2}(\cdot)$?

- χ^{2}-distribution table: Table A. 7 Critical Values of Chi-Square Distribution
- Alternatively, using R function:
pchisq(q, df, ncp $=0$, lower.tail $=$ TRUE, log.p $=$ FALSE)

Student's t-Distribution. Suppose $Z \sim N(0,1)$ and $W \sim \chi^{2}(K)$, and $Z \perp W$. Let T be

$$
T=\frac{Z}{\sqrt{W / K}}
$$

The distribution of T is the t-distribution with K degrees of freedom (df): $T \sim t(K)$. It was initially derived by Gosset (1908).

Properties:

(i) $\mathrm{E}(T)=0$.
(ii) $\mathrm{V}(T)=K /(K-2)$, if $K>2$.
(iii) If $T \sim t(K)$ with $K \gg 1, T$'s distribution is approximately $N(0,1)$. That is $t(\infty)=N(0,1)$. (why?)
How to obtain relevant values of $t(\cdot)$?

- Student's t-distribution table. Table A. 5 Critical Values for t-Distributions
- Alternatively, using R function:

```
pt(q, df, ncp, lower.tail = TRUE, log.p = FALSE)
```


§2.1 Point Estimation (Chp6)

§2.1.1 Some General Concepts

2.1.1A. What does point estimation do?

Suppose r.v. $X \sim F(\cdot ; \theta)$ (population) with unknown θ (parameter).

- Use the available information (data, a sample from the population) to compute a 'good guess' (point estimate) for the true value of θ
- The formula used to obtain a point estimate is called the point estimator of θ, denoted by $\hat{\theta}$.
- A point estimator is a suitable statistic: it is often referred to as a realization or an evaluation of the corresponding point estimator.

Example 2.1 (Devore 9th: p249) An automobile manufacturer has developed a new type of bumper. The manufacturer has used this bumper in a sequence of 25 controlled crashes against a wall at 10 mph , using one of its compact car models. The parameter to be estimated is p, the proportion of all such crashes that result in no damage:

$$
p=P(\text { no damage in a single crash }) .
$$

Let X the number of crashes that result in no visible damage: X observed to be $x=15$.

$$
\text { estimator } \hat{p}=\frac{X}{n} ; \quad \text { estimate } \hat{p}_{o b s}=\frac{x}{n}=\frac{15}{25}=0.60 .
$$

Why to use X / n as \hat{p} ? $X \sim B(25, p)$, so $E(X)=25 p$ and is approximated by the observed $x=15$

an alternative solution:

Suppose iid Y_{1}, \ldots, Y_{25} drawn from population $Y \sim B(1, p)$, $Y=1$ if no crash and $=0$ if crashed.

Note $\sum_{i=1}^{25} Y_{i}=X$:

$$
\begin{gathered}
E(Y)=p=P(Y=1) \\
\hat{p}=\bar{Y}=\frac{1}{25}\left(Y_{1}+\ldots+Y_{25}\right)=\frac{X}{25}
\end{gathered}
$$

Note X is observed as 15 . Thus,

$$
\hat{p}_{o b s}=15 / 25
$$

What will we do next?

Part 1. Introduction and Review (Chp 1-5)
Part 2. Basic Statistical Inference (Chp 6-9)
2.1 Point Estimation
2.2 Confidence Interval
2.3 One-Sample Test
2.4 Inference Based on Two-Samples

Part 3. Important Topics in Statistics (Chp 10-13)
3.1 One-Factor Analysis of Variance
3.2 Multi-Factor ANOVA
3.3 Simple Linear Regression Analysis
3.4 More on Regression

Part 4. Further Topics (Selected from Chp 14-16)
Remarks:

- Homework 1 is due on Monday Jan 16 by 5:00pm: please submit it via the course canvas page.
- Classroom for Tue lecture 10:30-12:20 is now AQ5006; for Mon 1st Tutorial D101, BLU10901.

