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What to do today (Jan 17, 2023)?

Part 2. Basic Statistical Inference (Chp 6-9)

§2.1 Point Estimation
§2.1.1 Some General Concepts
§2.1.2 Methods of Point Estimation

§2.2 Confidence Interval

§2.3 One-Sample Test

§2.4 Inference Based on Two-Samples

Reminder: Homework 2 is assigned and due on Monday
5:00pm.

X. Joan Hu: STAT-285 Department of Statistics and Actuarial Science Simon Fraser University



§2.1 Point Estimation (Chp6)

§2.1.1 Some General Concepts

2.1.1A. What does point estimation do?

Suppose r.v. X ∼ F (·; θ) (population) with unknown θ
(parameter).

I Use the available information (data, a sample from the
population) to compute a ‘good guess’ (point estimate) for
the true value of θ

I The formula used to obtain a point estimate is called the
point estimator of θ, denoted by θ̂.

I A point estimator is a suitable statistic: it is often referred to
as a realization or an evaluation of the corresponding point
estimator.



Example 2.2 (Devore 9th: p249) Reconsider the accompanying 20

observations on dielectric breakdown voltage for pieces of epoxy resin

first introduced in textbook’s Example 4.30 (Section 4.6). The pattern in

the normal probability plot given there is quite straight, so we now

assume that the distribution of breakdown voltage X is normal with

mean value µ.

Example 2.3 (Devore 9th: p250) The article “Is a Normal

Distribution the Most Appropriate Statistical Distribution for Volumertric

Properties in Asphalt Mixtures?” first cited in the textbook’s Example

4.26, reported 52 observations on X = voids filled with asphalt (%) for

52 specimens of a certain type of hot-mix asphalt.



§2.1 Point Estimation (Chp6)
§2.1.1 Some General Concepts

§2.1.1B. Criteria for selecting a good estimator

Unbiased Estimator.

I definition: An estimator θ̂ of θ is unbiased if E (θ̂) = θ.

I eg, with a random sample from a population: the sample
mean X̄ is an unbiased estimator of the population mean;

I eg, with a random sample from a population: the sample
variance S2 = 1

n−1
∑

(Xi − X̄ )2 is an unbiased estimator of
the population variance.

(Check the results, assuming X ∼ N(µ, σ2).)

=⇒ Use an unbiased estimator for a parameter in general, when
possible.



Standard Error.

I definition: σθ̂ =
√
Var(θ̂)

a measure on how well an unbiased estimator θ̂ estimates θ

I If both θ̂1 and θ̂2 are unbiased, θ̂1 is better (i.e., more
efficient) than θ̂2 if σθ̂1 ≤ σθ̂2 .

(Equivalently, use θ̂1 if Var(θ̂1) ≤ Var(θ̂2))

Example 2.2 (cont’d) If the breakdown voltage X ∼ N(µ, σ2),
µ̂′s s.e.:

Example 2.1 (cont’d) p̂′s s.e.:



Minimum Variance Unbiased Estimator (MVUE)

I definition:
An estimator θ̂ is called MVUE if θ̂ is unbiased and
Var(θ̂) ≤ Var(θ̂∗) for any unbiased estimator θ̂∗ of θ.

I If available, use the MVUE of θ to estimate θ.

I Proposition: If X1, . . . ,Xn are iid observations (a random
sample) from N(µ, σ2), then µ̂ = X̄ is the MVUE of µ.



Remark: in general, one wants to minimize θ̂ − θ.

An Often-Used Approach: to minimize mean squared error
(MSE)

E (θ̂ − θ)2 = Var(θ̂) +
(
E (θ̂)− θ

)2
I If θ̂ is unbiased?

=⇒ to check only its variance.

I If θ̂ is biased: the bias = E (θ̂)− θ?

How to construct good estimators?



§2.1.2 Methods of point estimation
§2.1.2A The method of moments estimation (MME)

Recall sample mean X̄ to estimate population mean µ: how about
to extend the idea to estimating kth population moment, with k
an integer (eg, k = 2)?

Estimation for population moments: Suppose
X ∼ F (·; θ1, . . . , θm) and iid observations X1, . . . ,Xn.

I kth population moment of X : µk = E (X k)

I kth sample moment with X1, . . . ,Xn:

µ̂k =
1

n

(
X k
1 + . . .+ X k

n

)
I Use µ̂k to estimate µk! (unbaised estimator)

eg, µ2 = E (X 2) is estimated by

µ̂2 =
1

n

(
X 2
1 + . . .+ X 2

n

)
.



Further, what if X ∼ F (·; θ1, . . . , θm) with θ1, . . . , θm not all
population moments? For example,

X ∼ N(µ, σ2) : θ1 = µ; θ2 = σ2.

How to estimate µ and σ2?

Recall that
µ2 = E (X 2) = σ2 + µ2 = θ2 + θ21

How about use the following?{
µ̂1 = X̄ to estimate µ1 = µ;
µ̂2 to estimate σ2 + µ2

If so, then {
µ̂1 = X̄ as µ̂,
σ̂2 = µ̂2 − X̄ 2 to estimate σ2



MME Procedure:

I X1, . . . ,Xn are iid observations from the population
X ∼ F (·; θ1, . . . , θm).

I Denote the kth population mean µk by µk = µk(θ1, . . . , θm)
with k = 1, . . ..

I The MME θ̂1, . . . , θ̂m are the solution to the equations jointly:
µ̂1 = µ1(θ1, . . . , θm),
......
µ̂m = µm(θ1, . . . , θm)



Revisit to the example of estimating µ and σ2 with X ∼ N(µ, σ2):
Solve the equations {

X̄ = µ,
µ̂2 = σ2 + µ2

and obttain
µ̂ = X̄ , σ̂2 = µ̂2 − X̄ 2.

Remarks:

I σ̂2 is σ̂2 = 1
n

∑n
i=1

(
Xi − X̄

)2
.

E (σ̂2) = n−1
n σ2, approximately unbiased as n→∞.

Example 2.4 (p265) Let X1, . . . ,Xn be a random sample from the

population with distribution Gamma(α, β).



§2.1.2 Methods of point estimation

§2.1.2B Maximum Likelihood Estimation (MLE)
by R.A. Fisher (geneticist and statistician), 1920

Likelihood Function:

I Let the joint distribution (pmf, or pdf ) of r.v.s. X1, . . . ,Xn be
p(x1, . . . , xn; θ1, . . . , θm).
When x1, . . . , xn are the observed values (realizations) of the
r.v.s., the likelihood function of θ1, . . . , θm given the data is

L(θ1, . . . , θm | data ) = f (x1, . . . , xn; θ1, . . . , θm)

I interpretation: a measure on how likely the observed sample
is overall with the values of θ1, . . . , θm.



I Often X1, . . . ,Xn are iid observations (a random sample) from
the population with distribution f (x ; θ). If the observed values
are x1, . . . , xn, then the likelihood function is

L(θ | data ) =
n∏

i=1

f (xi ; θ) = f (x1; θ) . . . f (xn; θ).

For example, iid X1, . . . ,X100 ∼ N(µ, σ2) with observed values
x1, . . . , x100. The likelihood function of µ, σ2 is

L(µ, σ2) =
100∏
i=1

1√
2πσ2

exp
{
− 1

2σ2
(xi − µ)2

}
=

( 1√
2πσ2

)100
exp

{
− 1

2σ2

100∑
i=1

(xi − µ)2
}
.



Maximum Likelihood Estimator (MLE):

I The MLE θ̂1, . . . , θ̂m are the values of θ1, . . . , θm that
maximize the likelihood function:

L(θ̂1, . . . , θ̂m | data ) = max L(θ1, . . . , θm | data ).

I interpretation: The MLE θ̂1, . . . , θ̂m give the parameter
values that agree most closely with the observed sample (the
data).

I Often used procedures: (Why?)
(1) to maximize ln L(θ1, . . . , θm)
(2) to obtain the solution to

∂ ln L(θ1,...,θm)
∂θ1

= 0,

......

......
∂ ln L(θ1,...,θm)

∂θm
= 0



Example 2.5 (textbook p266)

I Study. To examine the quality of a new bike helmet: a
sample of 10 new helmets are tested and the 1st, 3rd and
10th are found flawed.

I Statistical Formulation. X = 1 if a helmet is flawed; X = 0,
otherwise: X ∼ B(1, p), the Bernoulli distn with
p = P(flawed helmet)
To estm p with a random sample X1, . . . ,X10?

I MME. Recall p = P(X = 1) and E (X ) = µ1(p) = p, the
population mean. The MME is

to solve the equation: X̄ = µ1(p), with respect to p.

Thus MME p̂ = X̄ , and p̂obs = 3/10.



I MLE. Recall f (x ; p) = px(1− p)1−x . The likelihood function
of p is

L(p) =
n∏

i=1

pxi (1− p)1−xi = p
∑

i xi (1− p)n−
∑

i xi .

With the current data, L(p) = p3(1− p)7.

ln L(p) = (
∑
i

xi ) ln p + (n −
∑
i

xi ) ln(1− p),

d ln L(p)

dp
=

∑
i xi
p
−

n −
∑

i xi
1− p

= 0.

The MLE p̂ =
∑

i Xi

/
10. With the current data, p̂obs = 3/10.

The MLE and MME are the same.



§2.1 Point Estimation §2.2 Confidence Interval §2.3 One-Sample Test §2.4 Inference Based on Two-Samples

What will we do next?

Part 1. Introduction and Review (Chp 1-5)

Part 2. Basic Statistical Inference (Chp 6-9)
2.1 Point Estimation

2.1.1 Some General Concenpts
2.1.2 Methods of Point Estimation

2.2 Confidence Interval
2.3 One-Sample Test
2.4 Inference Based on Two-Samples

Part 3. Important Topics in Statistics (Chp 10-13)

Part 4. Further Topics (Selected from Chp 14-16)

Homework 2 is due on Monday 5:00pm.

X. Joan Hu: STAT-285 Department of Statistics and Actuarial Science Simon Fraser University
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