What to do today (Jan 20, 2023)?

Part 2. Basic Statistical Inference (Chp 6-9)

§2.1 Point Estimation

§2.1.1 Some General Concepts §2.1.2 Methods of Point Estimation

§2.2 Interval Estimation

§2.3 One-Sample Test

§2.4 Inference Based on Two-Samples

Reminder: Homework 2 is due on Monday 5:00pm.

X. Joan Hu: STAT-285

Department of Statistics and Actuarial Science Simon Fraser University

Example 2.6 (textbook p271)

Study. To find about my waiting time for a bus and 5 waiting times (in minutes) were recorded: 2.3, 3.7, 1.5, .4, 3.2

Statistical formulation. The waiting time X ~ U(0, θ). To estm θ with a random sample X₁,..., X₅?

- MME. Recall E(X) = μ₁(θ) = θ/2, the population mean. The MME is the solution to X
 = μ₁(θ).

 Thus MME θ
 = 2X
- ▶ **MLE.** Recall $f(x; \theta) = 1/\theta$, for $0 \le x \le \theta$. The likelihood function of θ is

 $L(\theta) = \prod_{i=1}^{5} f(x_i; \theta) = \begin{cases} 1/\theta^5, & \text{if } \min(x_i) \ge 0, \max(x_i) \le \theta \\ 0, & \text{otherwise} \end{cases}$

The MLE $\hat{\theta} = \max(X_i)$, and $\hat{\theta}_{obs} = 3.7$

Why to use MLE?

Invariance Property of MLE. If $\hat{\theta}$ is the MLE of θ , $\hat{\phi} = h(\hat{\theta})$ is the MLE of $\phi = h(\theta)$.

Large Sample Properties of MLE. With a random sample of size *n*, the MLE is $\hat{\theta}_n$.

▶ As $n \to \infty$, $E(\hat{\theta}_n) \to \theta$: approximately unbiased

▶ As
$$n \to \infty$$
, $\sigma_{\hat{\theta}_n} \to \sigma^* = \min \sigma_{\tilde{\theta}}$ with unbiased $\tilde{\theta}$

• The distribution of $\hat{\theta}_n$ is approximately $N(\theta, (\sigma^*)^2)$

Remarks. MLE is widely used, especially when n >> 1.

- Given the underlying population distribution, MLE is mechanically derived by calculus-based techniques.
- MLE is almost the best estimator that can be obtained.
- It is convenient to use to make statistical inference.

What have we studied on point estimation?

- Some general concepts: statistical literacy!
- MME and MLE: the two general procedures to obtain "good" estimators
 - Study more examples from the textbook and practice.

A point estimate of θ is sufficient? Any alternative estimates?

§2.2 Interval Estimation (Chp 7)

§2.2.1 Some General Concepts (Chp 7.1)

Goal: Suppose $X \sim F(\cdot; \theta)$ and X_1, \ldots, X_n iid observations from the population. To obtain a 'good' interval estimator of θ .

Example 3.1 (p277-279)

- Study. To determine the true average preferred height for a keyboard. n = 31 trained typists were selected and their preferred height were recorded with x

 = 80.0 cm.
- Formulation. The preferred height of a typist is r.v. $X \sim N(\mu, \sigma^2)$ with $\sigma = 2.0$ cm. What is μ ?

• Point estimation. Both MME and MLE are $\bar{X} = \frac{1}{31}(X_1 + \ldots + X_{31})$, and $\bar{X}_{obs} = \bar{x} = 80.0$. Suppose $X \sim F(\cdot; \theta)$ and X_1, \ldots, X_n iid observations from the population. What is a 'good' interval estimator?

100 $(1 - \alpha)$ % confidence interval of θ :

▶ Definition. θ̂_L and θ̂_U are two statistics. The random interval (θ̂_L, θ̂_U) is a 100(1 − α)% CI of θ is

$$P(\theta \in (\hat{\theta}_L, \hat{\theta}_U)) = 100(1 - \alpha)\%.$$

Here, $(1 - \alpha)$ is called the confidence level of the CI.

• eg, $\alpha = 0.05$, a $100(1 - \alpha)$ % CI of θ is a CI with confidence level of 95%.

• eg, in **Example 3.1**,
$$\mu = \theta$$
 and $\alpha = 5\%$:

lower limit
$$\hat{\theta}_L$$
 upper limit $\hat{\theta}_U$
 $\left(\bar{X} - Z_{1-\alpha/2}\frac{\sigma}{\sqrt{n}}, \quad \bar{X} + Z_{1-\alpha/2}\frac{\sigma}{\sqrt{n}}\right)$

Interpretation. (frequentist)

With 100 experiments' outcomes, there're at least $100(1 - \alpha)$ out of the 100 CI realizations containing the true value of θ .

Bayesian interpretation: different!

Confidence Level, Precision, and Sample Size.

▶ $100(1-\alpha)$ % Cl $(\hat{\theta}_L, \hat{\theta}_U)$: the confidence level is $1-\alpha$.

$$P(\theta \in (\hat{\theta}_L, \hat{\theta}_U)) = 1 - \alpha$$

- Length (Width) of CI: \(\heta_U \heta_L\), about CI's precision/accuracy.
- Often to determine the sample size *n* such that a 1 − α Cl has a desired precision ⇒ Study Design

eg, recall **Example 3.1**, $(1 - \alpha)$ Cl of μ with $\sigma = 2$ in $N(\mu, \sigma^2)$:

$$\left(\bar{X}-Z_{1-\alpha/2}rac{2}{\sqrt{n}}, \quad \bar{X}+Z_{1-\alpha/2}rac{2}{\sqrt{n}}
ight)$$

▶ If
$$1 - \alpha = 95\%$$
, the CI is $(\bar{X} - 1.96\frac{2}{\sqrt{n}}, \bar{X} + 1.96\frac{2}{\sqrt{n}})$ with length $2(1.96)(2/\sqrt{n})$.

If the desired length is A, the required sample size should be {(7.84)A}²

§2.1 Point Estimation	§2.2 Interval Estimation	§2.3 One-Sample Test	§2.4 Inference Based on Two-Samples
	0000		•
000			

What will we do next?

- Part 1. Introduction and Review (Chp 1-5)
 Part 2. Basic Statistical Inference (Chp 6-9)
 2.1 Point Estimation
 2.2 Confidence Interval
 2.3 One-Sample Test
 2.4 Inference Based on Two-Samples
 Part 3. Important Topics in Statistics (Chp 10-13)
- Part 4. Further Topics (Selected from Chp 14-16)

Homework 2 is due on Monday 5:00pm.