What to do today (Jan 24, 2023)?

Part 2. Basic Statistical Inference (Chp 6-9)
§2.1 Point Estimation (Chp 6)
§2.1.1 Some General Concepts
§2.1.2 Methods of Point Estimation
§2.2 Interval Estimation (Chp 7)
§2.2.1 Some General Concepts
§2.2.2 Confidence Intervals with Normal Population
§2.2.3 Approximate Confidence Intervals
§2.3 One-Sample Test
§2.4 Inference Based on Two-Samples

Reminder: Homework 3 is due on Monday 5:00pm.

§2.2 Interval Estimation (Chp 7)
 §2.2.1 Some General Concepts (Chp 7.1)

Goal: Suppose $X \sim F(\cdot ; \theta)$ and X_{1}, \ldots, X_{n} iid observations from the population. To obtain a 'good' interval estimator of θ.

Suppose $X \sim F(\cdot ; \theta)$ and X_{1}, \ldots, X_{n} iid observations from the population. What is a 'good' interval estimator?
$100(1-\alpha) \%$ confidence interval of θ :

- Definition. $\hat{\theta}_{L}$ and $\hat{\theta}_{U}$ are two statistics. The random interval $\left(\hat{\theta}_{L}, \hat{\theta}_{U}\right)$ is a $100(1-\alpha) \% \mathrm{Cl}$ of θ is

$$
P\left(\theta \in\left(\hat{\theta}_{L}, \hat{\theta}_{U}\right)\right)=100(1-\alpha) \% .
$$

Here, $(1-\alpha)$ is called the confidence level of the Cl .

- eg, $\alpha=0.05$, a $100(1-\alpha) \% \mathrm{Cl}$ of θ is a Cl with confidence level of 95%.
- eg, in Example 3.1, $\mu=\theta$ and $\alpha=5 \%$:

$$
\begin{array}{cc}
\text { lower limit } \hat{\theta}_{L} & \text { upper limit } \hat{\theta}_{U} \\
\left(\bar{X}-Z_{1-\alpha / 2} \frac{\sigma}{\sqrt{n}},\right. & \left.\bar{X}+Z_{1-\alpha / 2} \frac{\sigma}{\sqrt{n}}\right)
\end{array}
$$

- Interpretation. (frequentist)

With 100 experiments' outcomes, there're at least $100(1-\alpha)$ out of the 100 Cl realizations containing the true value of θ.

Bayesian interpretation: different!

- Confidence Level, Precision, and Sample Size.
- $100(1-\alpha) \% \mathrm{Cl}\left(\hat{\theta}_{L}, \hat{\theta}_{U}\right)$: the confidence level is $1-\alpha$.

$$
P\left(\theta \in\left(\hat{\theta}_{L}, \hat{\theta}_{U}\right)\right)=1-\alpha
$$

- Length (Width) of CI: $\hat{\theta}_{U}-\hat{\theta}_{L}$, about CI's precision/accuracy.
- Often to determine the sample size n such that a $1-\alpha \mathrm{Cl}$ has a desired precision \Rightarrow Study Design
eg, recall Example 3.1, $(1-\alpha) \mathrm{Cl}$ of μ with $\sigma=2$ in $N\left(\mu, \sigma^{2}\right)$:

$$
\left(\bar{X}-Z_{1-\alpha / 2} \frac{2}{\sqrt{n}}, \quad \bar{X}+Z_{1-\alpha / 2} \frac{2}{\sqrt{n}}\right)
$$

- If $1-\alpha=95 \%$, the CI is $\left(\bar{X}-1.96 \frac{2}{\sqrt{n}}, \bar{X}+1.96 \frac{2}{\sqrt{n}}\right)$ with length $2(1.96)(2 / \sqrt{n})$.
- If n increases, the length decreases.
- If the desired length is A, the required sample size should be $\{(7.84) / A\}^{2}$

Example 3.2 (p282)

- Study. To determine the true average response time of a new operating system. What sample size is necessary to ensure the resulting $95 \% \mathrm{Cl}$ has a width of (at most) 10 ?
- Formulation. Assuming a response time $X \sim N\left(\mu, \sigma^{2}\right)$ with $\sigma=25$. To obtain a $95 \% \mathrm{Cl}$ of μ with length ≤ 10
- Interval estimator. $\left(\bar{X}-1.96 \frac{25}{\sqrt{n}}, \bar{X}+1.96 \frac{25}{\sqrt{n}}\right)$.
- Sample size determination. The length $2(1.96)(25 / \sqrt{n})$ is to be at most 10 :

$$
2(1.96)(25 / \sqrt{n}) \leq 10
$$

Thus $\sqrt{n} \geq 2(1.96)(25) / 10=9.80$. So, n should be at least $97\left(9.80^{2}=96.04\right)$.

§2.2.2 Confidence Intervals Based on a Normal Population

Framework.

- Population. $X \sim N\left(\mu, \sigma^{2}\right)$;
- Data. a random sample $\left\{X_{1}, \ldots, X_{n}\right\}$
- Goal. to construct $\mathbf{C I}$ of μ and σ^{2}
\S 2.2.2A CI of μ when σ^{2} is known:
Recall from Example 3.1 that a $1-\alpha \mathrm{Cl}$ of μ with known σ^{2} is

$$
\left(\bar{X}-Z_{1-\alpha / 2} \frac{\sigma}{\sqrt{n}}, \bar{X}+Z_{1-\alpha / 2} \frac{\sigma}{\sqrt{n}}\right)
$$

with $P\left(Z<Z_{1-\alpha / 2}\right)=1-\alpha / 2$ if $Z \sim N(0,1)$.

- Rationale. $\bar{X} \sim N\left(\mu, \sigma^{2} / n\right)$ and

$$
\begin{aligned}
& P\left(\bar{X}-Z_{1-\alpha / 2} \frac{\sigma}{\sqrt{n}}<\mu<\bar{X}+Z_{1-\alpha / 2} \frac{\sigma}{\sqrt{n}}\right) \\
= & P\left(\left|\frac{\bar{X}-\mu}{\sqrt{\sigma^{2} / n}}\right| \leq Z_{1-\alpha / 2}\right)=1-\alpha
\end{aligned}
$$

- Evaluation. Plug in the Cl with (a) \bar{X}, (b) $Z_{1-\alpha / 2}$, (c) n and (d) σ^{2}.
- Other $1-\alpha \mathbf{C I}$ of μ.
- Is $\left(\bar{X}-Z_{1-\alpha / 3} \frac{\sigma}{\sqrt{n}}, \bar{X}+Z_{1-2 \alpha / 3} \frac{\sigma}{\sqrt{n}}\right)$ another $1-\alpha \mathrm{CI}$? If so, which one is better?
- How about $\left(-\infty, \bar{X}+Z_{1-\alpha} \frac{\sigma}{\sqrt{n}}\right)$ or $\left(\bar{X}-Z_{1-\alpha} \frac{\sigma}{\sqrt{n}}, \infty\right)$? $1-\alpha$ confidence upper/lower bound of μ

$\S 2.2 .2 \mathrm{~B} \mathrm{CI}$ of μ when σ^{2} is unknown

 Recall a $1-\alpha \mathrm{Cl}$ of μ with known $\sigma^{2}$$$
\left(\bar{X}-Z_{1-\alpha / 2} \frac{\sigma}{\sqrt{n}}, \bar{X}+Z_{1-\alpha / 2} \frac{\sigma}{\sqrt{n}}\right)
$$

It is not applicable when σ^{2} is unknown!

- Using an estimator to substitute σ^{2} in the CI?
- If so, is the resulting estimator still $1-\alpha \mathrm{Cl}$?

$$
\begin{aligned}
& P\left(\bar{X}-Z_{1-\alpha / 2} \frac{\hat{\sigma}}{\sqrt{n}}<\mu<\bar{X}+Z_{1-\alpha / 2} \frac{\hat{\sigma}}{\sqrt{n}}\right) \\
= & P\left(\left|\frac{\bar{X}-\mu}{\sqrt{\hat{\sigma}^{2} / n}}\right| \leq Z_{1-\alpha / 2}\right)=1-\alpha \quad ? ? ?
\end{aligned}
$$

- How about using $\hat{\sigma}^{2}=S^{2}$, and replacing $Z_{1-\alpha / 2}$ with

$$
t_{\alpha / 2}(n-1) ?
$$

$$
P\left(\left|\frac{\bar{X}-\mu}{\sqrt{S^{2} / n}}\right| \leq t_{\alpha / 2}(n-1)\right)=1-\alpha
$$

for $(\bar{X}-\mu) / \sqrt{S^{2} / n} \sim t(n-1)$.

A $1-\alpha \mathbf{C l}$ of μ :

$$
\left(\bar{X}-t_{\alpha / 2}(n-1) \sqrt{\frac{S^{2}}{n}}, \quad \bar{X}+t_{\alpha / 2}(n-1) \sqrt{\frac{S^{2}}{n}}\right)
$$

Notation.
S^{2} - the sample variance;
$t_{\alpha / 2}(n-1)$ - the $\alpha / 2$-right tail of the Student t-distribution with $\mathrm{df}=n-1$.

Why?

Any theoretical justification?

Review 2 in Part 1: Sampling Distributions

- Some distributions derived from $N\left(\mu, \sigma^{2}\right)$

Chi-Square Distribution. Suppose Z_{1}, \ldots, Z_{K} are i.i.d. with $N(0,1)$. Let W be $W=Z_{1}^{2}+\ldots+Z_{K}^{2}$. The distribution of W is the chi-square distribution with the degrees of freedom (df) K, denoted by $W \sim \chi^{2}(K)$.

Properties:

(i) $\mathrm{E}(W)=K$.
(ii) $\mathrm{V}(W)=2 K$.
(iii) If $W_{1} \sim \chi^{2}\left(K_{1}\right), W_{2} \sim \chi^{2}\left(K_{2}\right)$ and W_{1} and W_{2} are independent, then $W_{1}+W_{2} \sim \chi^{2}\left(K_{1}+K_{2}\right)$. (why?)

How to obtain relevant values of $\chi^{2}(\cdot)$?

- χ^{2}-distribution table: Table A. 7 Critical Values of Chi-Square Distribution
- Alternatively, using R function:
pchisq(q, df, ncp $=0$, lower.tail = TRUE, log.p = FALSE)

Student's t-Distribution. Suppose $Z \sim N(0,1)$ and $W \sim \chi^{2}(K)$, and $Z \perp W$. Let T be

$$
T=\frac{Z}{\sqrt{W / K}}
$$

The distribution of T is the t-distribution with K degrees of freedom (df): $T \sim t(K)$. It was initially derived by Gosset (1908).
Properties:
(i) $\mathrm{E}(T)=0$.
(ii) $\mathrm{V}(T)=K /(K-2)$, if $K>2$.
(iii) If $T \sim t(K)$ with $K \gg 1, T$'s distribution is approximately $N(0,1)$. That is $t(\infty)=N(0,1)$. (why?)
How to obtain relevant values of $t(\cdot)$?

- Student's t-distribution table. Table A. 5 Critical Values for t-Distributions
- Alternatively, using R function:

```
pt(q, df, ncp, lower.tail = TRUE, log.p = FALSE)
```

\Longrightarrow the theoretical support to the $\mathbf{C l}$ contruction:
$\frac{\bar{x}-\mu}{\sqrt{S^{2} / n}} \sim t(n-1)$

Example 3.3 (p299)

- Study. Consider hot dog's fat content (in \%): what is the average hot dog fat content? what is the fat content of the next hot dog?
- Data. The fat contents of $n=10$ randomly selected hot dogs and $\bar{x}=21.90$.
- Formulation. The fat content of a hot dog, r.v. $X \sim N\left(\mu, \sigma^{2}\right)$. What is μ ? What is x_{10+1} ?
- Estimation. \bar{X} : the best unbiased estimator of $\mu ; \bar{x}=21.90$ $95 \% \mathrm{Cl}$ of $\mu:\left(\bar{X}-t_{\alpha / 2}(n-1) \sqrt{\frac{S^{2}}{n}}, \quad \bar{X}+t_{\alpha / 2}(n-1) \sqrt{\frac{S^{2}}{n}}\right)$. Its evaluation is $(18.94,24.86)$ because of (i) $n=10$ (ii) $\alpha=0.05$ (iii) $t_{0.025}(9)=2.262$ and $s=4.134$.

- Prediction.

Thinking $\ldots X_{n+1} \sim N\left(\mu, \sigma^{2}\right)$ and

$$
\begin{aligned}
& \bar{X}-X_{n+1} \sim N\left(0, \sigma^{2}(1+1 / n)\right) \\
& Z=\frac{\bar{X}-X_{n+1}}{\sqrt{\sigma^{2}(1+1 / n)}} \sim N(0,1) \\
& T=\frac{\bar{X}-X_{n+1}}{\sqrt{S^{2}(1+1 / n)}} \sim t(n-1) .
\end{aligned}
$$

Here comes \ldots... a prediction interval (PI) with level of $1-\alpha$:

$$
\left(\bar{X}-t_{\alpha / 2}(n-1) S \sqrt{1+\frac{1}{n}}, \quad \bar{X}+t_{\alpha / 2}(n-1) S \sqrt{1+\frac{1}{n}}\right)
$$

\Rightarrow a $95 \% \mathrm{PI}$ for the next hot dog's fat content is $(12.09,31.71)$. much wider than the $95 \% \mathrm{Cl}$ of μ ! Why?

2.2.2C Confidence interval of σ^{2}

Recall we constructed Cl of μ based on \bar{X} 's distribution.

- What is S^{2} 's distribution?

$$
\frac{(n-1) S^{2}}{\sigma^{2}}=\frac{\sum\left(X_{i}-\bar{X}\right)^{2}}{\sigma^{2}} \sim \chi^{2}(n-1)
$$

- That is

$$
P\left(\chi_{1-\alpha / 2}^{2}(n-1)<\frac{(n-1) S^{2}}{\sigma^{2}}<\chi_{\alpha / 2}^{2}(n-1)\right)=1-\alpha
$$

Notation:
If $W \sim \chi^{2}(\nu)$, the critical value $\chi_{\beta}^{2}(\nu)$ satisfies
$P\left(W>\chi_{\beta}^{2}(\nu)\right)=\beta$.

- So that

$$
P\left(\frac{(n-1) S^{2}}{\chi_{\alpha / 2}^{2}(n-1)}<\sigma^{2}<\frac{(n-1) S^{2}}{\chi_{1-\alpha / 2}^{2}(n-1)}\right)=1-\alpha
$$

Here come ...
a $95 \% \mathrm{Cl}$ of σ^{2} :

$$
\left(\frac{(n-1) S^{2}}{\chi_{\alpha / 2}^{2}(n-1)}, \frac{(n-1) S^{2}}{\chi_{1-\alpha / 2}^{2}(n-1)}\right)
$$

a $95 \% \mathbf{C l}$ of σ :

$$
\left(\sqrt{\frac{(n-1) S^{2}}{\chi_{\alpha / 2}^{2}(n-1)}}, \quad \sqrt{\frac{(n-1) S^{2}}{\chi_{1-\alpha / 2}^{2}(n-1)}}\right)
$$

Example 3.4 (p305-306)

- Study. on breakdown voltage: what is its variation?
- Data. $n=17$ observations collected, with $s^{2}=137324.3$
- Stats formulation. A breakdown voltage $X \sim N\left(\mu, \sigma^{2}\right)$. What is σ^{2} ?
- Estimation. $95 \% \mathrm{Cl}$:

$$
\left(\frac{(n-1) S^{2}}{\chi_{\alpha / 2}^{2}(n-1)}, \frac{(n-1) S^{2}}{\chi_{1-\alpha / 2}^{2}(n-1)}\right)
$$

Its evaluation with the given s^{2} and
$n-1=16, \chi_{0.025}^{2}(16)=28.845, \chi_{0.975}^{2}(16)=6.908$
is $(76172.3,318064.4)$.
Rather wide because of a small sample size!

What will we do next?

Part 1. Introduction and Review (Chp 1-5)
Part 2. Basic Statistical Inference (Chp 6-9)
2.1 Point Estimation (Chp 6)
2.2 Confidence Interval (Chp 7)

- 2.2.1 Some General Concepts
- 2.2.2 Confidence Intervals with Normal Population
- 2.2.3 Approximate Confidence Intervals
2.3 One-Sample Test (Chp 8)
2.4 Inference Based on Two-Samples

Part 3. Important Topics in Statistics (Chp 10-13)
Part 4. Further Topics (Selected from Chp 14-16)

Homework 3 is due on Monday 5:00pm.

