What to do today (Jan 31, 2023)?

Part 2. Basic Statistical Inference (Chp 6-9)

§2.1 Point Estimation (Chp 6)
§2.2 Interval Estimation (Chp 7)
§2.3 One-Sample Tests of Hypotheses (Chp 8)
§2.3.1 Introduction and Basic Concepts
§2.3.2 Tests about Population Mean
§2.3.3 Large Sample Tests
§2.3.4 Discussions
§2.4 Inference Based on Two-Samples

Some Logistics.

- There is no homework this week.
- Midterm 1 is on Fri (Feb 3) 10:30-11:20. It will be open book, and cover Chp 6 and Chp 7.

§2.3. One-Sample Tests of Hypotheses (Chp 8)

§2.3.1 Introduction and Basic Concepts (Chp 8.1)

Practical problems are often formulated into $X \sim F(\cdot ; \theta)$ and to make inferences on θ

- to estimate θ
\Rightarrow "point/interval estimation" (Chp 6,7)
- to choose between two contradictory claims of θ
\Rightarrow "hypothesis testing" (Chp 8,9)
e.g., to assess a new drug:
- to evaluate a key quantity associated with it, or
- to compare it with the standard drug - is it similar or better?
\Longrightarrow To Study Hypotheses Testing!

Statistical Hypotheses:

- null hypothesis. $\left(H_{0}\right)$

A claim is initially assumed to be true ("prior belief"). eg, $H_{0}: \theta=0$

- alternative hypothesis. $\left(H_{1}\right.$ or $\left.H_{a}\right)$

A contradictory statement to H_{0} (big evidence needed to support it).
eg, one-sided $H_{1}: \theta>0$; or two-sided $H_{1}: \theta \neq 0$

Test Procedure:

To provide a rule, which is based on the sample data through a test statistic (say, T), to decide whether to reject H_{0} or not.

It can be presented by checking if $T_{\text {obs }}$ is in the "rejection region", a subset of all possible values of T.

Errors in Hypothesis Testing:

- type I error rate. $\alpha=P$ (the rule rejecting $\left.H_{0} \mid H_{0}\right)$
- the significance level of the test, or the risk to take when rejecting H_{0}
- usually to control it
- type II error rate. $\beta=P$ (the rule accepting $\left.H_{0} \mid H_{1}\right)$
- usually to make it as small as possible
- $1-\beta=P$ (the rule rejecting $H_{0} \mid H_{1}$), the power (efficiency) of the test.

Remarks:

- $\alpha=.05$ is often used: to "protect" H_{0} - the event of making type I error is a small probability event
- $1-\beta=80 \%$ is commonly used: to achieve a satisfactory power

2.3.2 Tests about Population Mean

$H_{0}: \mu=\mu_{0}$
2.3.2A When Population is Normal: $X \sim N\left(\mu, \sigma^{2}\right)$

If σ^{2} is known,

- test statistic.

$$
Z=\frac{\bar{X}-\mu_{0}}{\sigma / \sqrt{n}} \sim N(0,1) \text { under } H_{0}
$$

- rejection region. with pre-determined α
(i) when $H_{1}: \mu \neq \mu_{0}: \mathcal{R}=\left\{z:|z|>z_{\alpha / 2}\right\}$
(ii) when $H_{1}: \mu<\mu_{0}: \mathcal{R}=\left\{z: z<-z_{\alpha}\right\}$
(iii) when $H_{1}: \mu>\mu_{0}: \mathcal{R}=\left\{z: z>z_{\alpha}\right\}$
- making decision. Reject H_{0} if $Z_{\text {obs }} \in \mathcal{R}$; otherwise, accept H_{0}.

If σ^{2} is unknown,

- test statistic.

$$
T=\frac{\bar{X}-\mu_{0}}{S / \sqrt{n}} \sim t(n-1) \text { under } H_{0}
$$

S^{2} is the sample variance.
\rightarrow rejection region, with pre-determined α
(i) when $H_{1}: \mu \neq \mu_{0}: \mathcal{R}=\left\{t:|t|>t_{\alpha / 2}(n-1)\right\}$
(ii) when $H_{1}: \mu<\mu_{0}: \mathcal{R}=\left\{t: t<-t_{\alpha}(n-1)\right\}$
(iii) when $H_{1}: \mu>\mu_{0}: \mathcal{R}=\left\{t: t>t_{\alpha}(n-1)\right\}$

- making decision. Reject H_{0} if $T_{o b s} \in \mathcal{R}$; otherwise, accept H_{0}.

Example 4.2 (p331)

- Study. tread life of a tire; average value is 30 K or larger with $\alpha=0.01$?
- Data. $n=16$ observations with $\bar{x} ; \sigma=1.5 \mathrm{~K}$
- Formulation. $X \sim N\left(\mu, \sigma^{2}\right)$; a random sample of size $n=16 ; H_{0}: \mu=30 K$ vs $H_{1}: \mu>30 K$

- Testing.

- test statistic. $Z=\frac{\bar{X}-30000}{1500 / \sqrt{16}} \sim N(0,1)$ under H_{0}
- rejection region. a critical value c is chosen such that $P\left(Z>c \mid H_{0}\right)=0.01: c=z_{\alpha}=2.33 ; \mathcal{R}=\{z: z>2.33\}$.
- making decision.
$Z_{\text {obs }}=\frac{\bar{x}-30000}{1500 / \sqrt{16}}$: if $Z_{\text {obs }}>2.33$, reject H_{0}; otherwise, do not reject H_{0}.

Moreover

- What if σ is unknown and $s=1500$? $\left(t_{0.01}(15)=2.60\right)$
- Prob of making type II error when $\mu=31 \mathrm{~K}$.
$\beta=P(Z \notin \mathcal{R} \mid \mu=31 K)=P(Z<2.33 \mid \mu=31 K)$ if $\sigma=1500$.
Because $Z \sim N\left(\frac{31 K-30 K}{1500 / \sqrt{16}}, 1\right)$ when $\mu=31 \mathrm{~K}$,

$$
\begin{aligned}
\beta & =P\left(\left.Z-\frac{31 K-30 K}{1500 / \sqrt{16}}<2.33-\frac{31 K-30 K}{1500 / \sqrt{16}} \right\rvert\, \mu=31 K\right) \\
& =\Phi\left(2.33-\frac{31 K-30 K}{1500 / \sqrt{16}}\right)=0.3669,
\end{aligned}
$$

- How large is n to make the test power above 90% ?
$1-\beta \geq .9$ is equivalent to

$$
0.1 \geq \Phi\left(2.33-\frac{31 K-30 K}{1500 / \sqrt{n}}\right) ;
$$

thus $2.33-\frac{31 K-30 K}{1500 / \sqrt{n}} \leq 1.28 . \Rightarrow n \geq 29.32$. So, $n \geq 30$.
(Design for a Study with Hypothesis Testing!)

2.3.2B When Population is Bernoulli

Setup.

- $X \sim B(1, p)$
- $H_{0}: \mu=\mu_{0}$ is then $H_{0}: p=p_{0}$
- a random sample $\left\{X_{1}, \ldots, X_{n}\right\}$

Testing procedure.

- Step 1. to construct test statistic.

$$
Y=\sum_{i=1}^{n} X_{i} \sim B\left(n, p_{0}\right) \text { under } H_{0}
$$

- Step 2. to choose rejection region. with desired α
(i) if $H_{1}: p \neq p_{0}$: to choose c_{1}, c_{2} such that
$P\left(Y<c_{1} \mid H_{0}\right)=\alpha / 2, P\left(Y>c_{2} \mid H_{0}\right)=\alpha / 2$.
$\Rightarrow \mathcal{R}=\left\{y: y<c_{1}\right.$ or $\left.y>c_{2}\right\}$;
(ii) if $H_{1}: p<p_{0}$: to choose c such that $P\left(Y<c \mid H_{0}\right)=\alpha$, $\Rightarrow \mathcal{R}=\{y: y<c\}$
(iii) if $H_{1}: p>p_{0}$: to choose c such that $P\left(Y>c \mid H_{0}\right)=\alpha$,

$$
\Rightarrow \mathcal{R}=\{y: y>c\}
$$

- Step 3. to make decision.
if $Y_{\text {obs }} \in \mathcal{R}$, reject H_{0};
if $Y_{\text {obs }} \notin \mathcal{R}$, do not reject H_{0}.

Example 4.3 (p350)

- Study. whether fewer than 90% trash cans survive over 6 yrs; desired $\alpha=0.05$
- Data. $n=20$ observations: 14 cans survived >6 yrs
- Formulation. $X \sim B(1, p)$ with $X=1,0$ for a can survives over 6 yrs or not; $H_{0}: p=.9$ vs $H_{1}: p<.9$
- Testing.
- test statistic: $Y=\sum_{i=1}^{20} X_{i} \sim B(20, .9)$ under H_{0}
- rejection region: to choose c such that $P\left(Y<c \mid H_{0}\right)=0.05$; from Table A.1, $c \in(15,16)$ $\Rightarrow \mathcal{R}=\{y: y \leq 15\}$.
- Making decision. $14 \in \mathcal{R}$: reject H_{0}.
- Moreover

$$
\beta=P(Y \notin \mathcal{R} \mid p=0.8)=P(Y>15 \mid p=0.8)=.63
$$

- high type I/ error rate! (or, low test power 37\%)
- HWQ: how large is n such that $\beta=0.2$ when $p=0.8$?

2.3.2C When n is large

Recall, if $n \gg 1$,

- By CLT, $\bar{X} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right)$ approximately. Equivalently,

$$
\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \sim N(0,1)
$$

approximately.

- Further, $\frac{\bar{x}-\mu}{s / \sqrt{n}} \sim t(n-1)$ approximately: $t(n-1) \approx N(0,1)$ now. Thus, approximately

$$
\frac{\bar{X}-\mu}{S / \sqrt{n}} \sim N(0,1)
$$

\Rightarrow When $n \gg 1$ and for any population disn,

- use $T=\frac{\bar{x}-\mu_{0}}{s / \sqrt{n}} \sim N(0,1)$ as the test statistic for $H_{0}: \mu=\mu_{0}$
- use the procedure in 2.3.2A to determine \mathcal{R}

Example 4.4 (p332)

- Study. to check if the true average DCP of a type of pavement is below 30 as required.
- Data. $n=52$ observations with $s / \bar{x}=.4265$ Median=27

Example 4.4 (p332)

- Study. to check if the true average DCP of a type of pavement is below 30 as required.
- Data. $n=52$ observations with $s / \bar{x}=.4265$
- Formulation. $X \sim F(\cdot)$ with $E(X)=\mu$ but $F(\cdot)$ is not likely normal from the descriptive statistics

$$
H_{0}: \mu=30 \text { vs } H_{1}: \mu<30 ; \text { taking } n=52 \gg 1
$$

- Testing.
test statistic: $Z=\frac{\bar{X}-30}{S / \sqrt{52}} \sim N(0,1)$ under H_{0} rejection region: to choose c such that $P\left(Z<c \mid H_{0}\right)=0.05$;

$$
\begin{aligned}
c=-z_{0.05} & =-1.645 \\
& \Rightarrow \mathcal{R}=\{z: z \leq-1.645\}
\end{aligned}
$$

- Making decision. $Z_{o b s}=\frac{28.76-30}{12.26 / \sqrt{52}}=-.73$:
$Z_{\text {obs }} \notin \mathcal{R}$ and thus do not reject H_{0}.

What will we study next?

Part 1. Introduction and Review (Chp 1-5)
Part 2. Basic Statistical Inference (Chp 6-9)
§2.1. Point Estimation (Chp 6)
§2.2. Interval Estimation (Chp 7)
§2.3. One-Sample Tests of Hypotheses (Chp 8)
§2.3.1 Introduction and Basic Concepts (Chp 8.1)
§2.3.2 Tests About Population Mean (Chp 8.2, 8.3)
§2.3.3 Large Sample Tests (Chp 8.4)
§2.3.4 Discussions (Chp 8.5)

Part 3. Important Topics in Statistics (Chp 10-13)
Part 4. Further Topics (Selected from Chp 14-16)
Reminder: Midterm 1 (open book; 10:30-11:20 on Fri Feb 3, 2023)

