What to do today (Jan 31, 2023)?

Part 2. Basic Statistical Inference (Chp 6-9)

- §2.1 Point Estimation (Chp 6)
 §2.2 Interval Estimation (Chp 7)
 §2.3 One-Sample Tests of Hypotheses (Chp 8)
 §2.3.1 Introduction and Basic Concepts
 §2.3.2 Tests about Population Mean
 §2.3.3 Large Sample Tests
- §2.4 Inference Based on Two-Samples

§2.3.4 Discussions

Some Logistics.

- There is no homework this week.
- ▶ Midterm 1 is on Fri (Feb 3) 10:30-11:20. It will be open book, and cover Chp 6 and Chp 7.

§2.3. One-Sample Tests of Hypotheses (Chp 8)

§2.3.1 Introduction and Basic Concepts (Chp 8.1)

Practical problems are often formulated into $X \sim F(\cdot; \theta)$ and to make inferences on θ

- \blacktriangleright to estimate θ
 - \Rightarrow "point/interval estimation" (Chp 6,7)
- \blacktriangleright to choose between two contradictory claims of θ
 - \Rightarrow "hypothesis testing" (Chp 8,9)
 - e.g., to assess a new drug:
 - to evaluate a key quantity associated with it, or
 - to compare it with the standard drug is it similar or better?

⇒ To Study Hypotheses Testing!

Statistical Hypotheses:

- **null hypothesis.** (H_0) A claim is initially assumed to be true ("prior belief"). eg, $H_0: \theta = 0$
- alternative hypothesis. (H₁ or H₂)
 A contradictory statement to H₀ (big evidence needed to support it).
 eg, one-sided H₁: θ > 0; or two-sided H₁: θ ≠ 0

Test Procedure:

To provide a rule, which is based on the sample data through a test statistic (say, T), to decide whether to reject H_0 or not.

It can be presented by checking if T_{obs} is in the "rejection region", a subset of all possible values of T.

Errors in Hypothesis Testing:

- **type I error rate.** $\alpha = P(\text{the rule rejecting } H_0 | H_0)$
 - ightharpoonup the significance level of the test, or the risk to take when rejecting H_0
 - usually to control it
- **type II error rate.** $\beta = P(\text{the rule accepting } H_0|H_1)$
 - usually to make it as small as possible
 - ▶ $1 \beta = P$ (the rule rejecting $H_0|H_1$), the power (efficiency) of the test.

Remarks:

- $\alpha=.05$ is often used: to "protect" H_0 the event of making type I error is a small probability event
- ho 1 eta = 80% *is commonly used*: to achieve a satisfactory power

2.3.2 Tests about Population Mean

$$H_0: \mu = \mu_0$$

- **2.3.2A** When Population is Normal: $X \sim N(\mu, \sigma^2)$ If σ^2 is known.
 - test statistic.

$$Z = rac{ar{X} - \mu_0}{\sigma / \sqrt{n}} \sim \mathit{N}(0,1)$$
 under H_0

- ightharpoonup rejection region. with pre-determined α
 - (i) when $H_1: \mu \neq \mu_0: \mathcal{R} = \{z: |z| > z_{\alpha/2}\}$
 - (ii) when $H_1: \mu < \mu_0$: $\mathcal{R} = \{z: z < -z_{\alpha}\}$
 - (iii) when $H_1: \mu > \mu_0$: $\mathcal{R} = ig\{z: z > z_lphaig\}$
- ▶ making decision. Reject H_0 if $Z_{obs} \in \mathcal{R}$; otherwise, accept H_0 .

If σ^2 is unknown.

test statistic

$$T=rac{ar{X}-\mu_0}{S/\sqrt{n}}\sim t(n-1)$$
 under H_0

 S^2 is the sample variance.

- rejection region, with pre-determined α
 - (i) when $H_1: \mu \neq \mu_0$: $\mathcal{R} = \{t: |t| > t_{\alpha/2}(n-1)\}$
 - (ii) when $H_1: \mu < \mu_0$: $\mathcal{R} = \{t: t < -t_{\alpha}(n-1)\}$
 - (iii) when $H_1: \mu > \mu_0$: $\mathcal{R} = \{t: t > t_{\alpha}(n-1)\}$
- **making decision.** Reject H_0 if $T_{obs} \in \mathcal{R}$; otherwise, accept H_0 .

Example 4.2 (p331)

- ▶ **Study.** tread life of a tire; average value is 30K or larger with $\alpha = 0.01$?
- ▶ **Data.** n = 16 observations with \bar{x} ; $\sigma = 1.5$ K
- ► Formulation. $X \sim N(\mu, \sigma^2)$; a random sample of size n = 16; $H_0: \mu = 30K$ vs $H_1: \mu > 30K$
- ► Testing.
 - ► test statistic. $Z = \frac{\bar{X} 30000}{1500 / \sqrt{16}} \sim N(0, 1)$ under H_0
 - rejection region. a critical value c is chosen such that $P(Z > c|H_0) = 0.01$: $c = z_\alpha = 2.33$; $\mathcal{R} = \{z : z > 2.33\}$.
 - making decision. $Z_{obs} = \frac{\bar{x}-30000}{1500/\sqrt{16}}$: if $Z_{obs} > 2.33$, reject H_0 ; otherwise, do not reject H_0 .

Moreover

- ▶ What if σ is unknown and s = 1500? $(t_{0.01}(15) = 2.60)$
- ▶ Prob of making type II error when $\mu = 31K$.

$$\beta = P(Z \notin \mathcal{R} | \mu = 31K) = P(Z < 2.33 | \mu = 31K) \text{ if } \sigma = 1500.$$

Because $Z \sim N(\frac{31K-30K}{1500/\sqrt{16}}, 1)$ when $\mu = 31K$,

$$\beta = P(Z - \frac{31K - 30K}{1500/\sqrt{16}} < 2.33 - \frac{31K - 30K}{1500/\sqrt{16}} | \mu = 31K)$$
$$= \Phi(2.33 - \frac{31K - 30K}{1500/\sqrt{16}}) = 0.3669,$$

- ► How large is n to make the test power above 90%?
- $1 \beta \ge .9$ is equivalent to

$$0.1 \ge \Phi(2.33 - \frac{31K - 30K}{1500/\sqrt{n}});$$

thus $2.33 - \frac{31K - 30K}{1500/\sqrt{n}} \le 1.28$. $\Rightarrow n \ge 29.32$. So, $n \ge 30$. (Design for a Study with Hypothesis Testing!)

2.3.2B When Population is Bernoulli

Setup.

- \triangleright $X \sim B(1, p)$
- ► $H_0: \mu = \mu_0$ is then $H_0: p = p_0$
- ightharpoonup a random sample $\{X_1,\ldots,X_n\}$

Testing procedure.

▶ Step 1. to construct test statistic.

$$Y = \sum_{i=1}^{n} X_i \sim B(n, p_0)$$
 under H_0

Step 2. to choose rejection region. with desired α

(i) if
$$H_1: p \neq p_0$$
: to choose c_1, c_2 such that

$$P(Y < c_1|H_0) = \alpha/2$$
, $P(Y > c_2|H_0) = \alpha/2$.
 $\Rightarrow \mathcal{R} = \{y : y < c_1 \text{ or } y > c_2\}$;

(ii) if
$$H_1: p < p_0$$
: to choose c such that $P(Y < c|H_0) = \alpha$,

$$\Rightarrow \mathcal{R} = \{ y : y < c \}$$

(iii) if
$$H_1: p > p_0$$
: to choose c such that $P(Y > c|H_0) = \alpha$, $\Rightarrow \mathcal{R} = \{y: y > c\}$;

Step 3. to make decision.

if $Y_{obs} \in \mathcal{R}$, reject H_0 : if $Y_{obs} \notin \mathcal{R}$, do not reject H_0 .

Example 4.3 (p350)

- ▶ **Study.** whether fewer than 90% trash cans survive over 6 yrs; desired $\alpha = 0.05$
- **Data.** n = 20 observations: 14 cans survived > 6 yrs
- ▶ **Formulation.** $X \sim B(1, p)$ with X = 1, 0 for a can survives over 6 yrs or not; $H_0: p = .9$ vs $H_1: p < .9$
- Testing.
 - \blacktriangleright test statistic: $Y = \sum_{i=1}^{20} X_i \sim B(20, .9)$ under H_0
 - ▶ rejection region: to choose c such that $P(Y < c|H_0) = 0.05$; from Table A.1, $c \in (15, 16)$ $\Rightarrow \mathcal{R} = \{y : y \leq 15\}.$
- ▶ Making decision. $14 \in \mathcal{R}$: reject H_0 .

► Moreover

$$\beta = P(Y \notin \mathcal{R}|p = 0.8) = P(Y > 15|p = 0.8) = .63$$

- high type II error rate! (or, low test power 37%)

- mgn type n enor rate: (or, low test power 5176)

▶ HWQ: how large is n such that $\beta = 0.2$ when p = 0.8?

2.3.2C When *n* is large

Recall, if $n \gg 1$,

b By CLT, $\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$ approximately. Equivalently,

$$rac{ar{X}-\mu}{\sigma/\sqrt{n}}\sim N(0,1)$$

approximately.

▶ Further, $\frac{\bar{X}-\mu}{S/\sqrt{n}}\sim t(n-1)$ approximately: $t(n-1)\approx N(0,1)$ now. Thus, approximately

$$\frac{\bar{X}-\mu}{S/\sqrt{n}}\sim N(0,1).$$

- \Rightarrow When $n \gg 1$ and for any population disn,
 - use $T=rac{ar{X}-\mu_0}{s/\sqrt{n}}\sim N(0,1)$ as the test statistic for $H_0:\mu=\mu_0$
 - \blacktriangleright use the procedure in **2.3.2A** to determine $\mathcal R$

Example 4.4 (p332)

- ▶ **Study.** to check if the true average DCP of a type of pavement is below 30 as required.
- ▶ Data. n = 52 observations with $s/\bar{x} = .4265$ Xbar=28.76, S=12.26,

 Median=27

Example 4.4 (p332)

- ▶ **Study.** to check if the true average DCP of a type of pavement is below 30 as required.
- ▶ **Data.** n = 52 observations with $s/\bar{x} = .4265$
- **Formulation.** $X \sim F(\cdot)$ with $E(X) = \mu$ but $F(\cdot)$ is not likely normal from the descriptive statistics $H_0: \mu = 30$ vs $H_1: \mu < 30$; taking $n = 52 \gg 1$
- ▶ **Testing.** test statistic: $Z = \frac{\bar{X} 30}{S/\sqrt{52}} \sim N(0,1)$ under H_0 rejection region: to choose c such that $P(Z < c|H_0) = 0.05$;

$$c = -z_{0.05} = -1.645$$

 $\Rightarrow \mathcal{R} = \{z : z \le -1.645\}.$

▶ Making decision. $Z_{obs} = \frac{28.76-30}{12.26/\sqrt{52}} = -.73$: $Z_{obs} \notin \mathcal{R}$ and thus do not reject H_0 .

What will we study next? Part 1. Introduction and Review (Chp 1-5)

Part 2. Basic Statistical Inference (Chp 6-9)

```
§2.1. Point Estimation (Chp 6)
```

```
§2.2. Interval Estimation (Chp 7)
```

```
§2.3. One-Sample Tests of Hypotheses (Chp 8)
```

```
§2.3.1 Introduction and Basic Concepts (Chp 8.1)
§2.3.2 Tests About Population Mean (Chp 8.2, 8.3)
§2.3.3 Large Sample Tests (Chp 8.4)
```

Part 3. Important Topics in Statistics (Chp 10-13)

Part 4. Further Topics (Selected from Chp 14-16)

§2.3.4 Discussions (Chp 8.5)

Reminder: Midterm 1 (open book; 10:30-11:20 on Fri Feb 3, 2023)