What to do today (Feb 7, 2023)? Part 1. Introduction and Review (Chp 1-5) Part 2. Basic Statistical Inference (Chp 6-9)

§2.1 Point Estimation (Chp 6)
§2.2 Interval Estimation (Chp 7)
§2.3 One-Sample Tests of Hypotheses (Chp 8)
§2.3.1 Introduction and Basic Concepts
§2.3.2 Tests about Population Mean
§2.3.3* Large Sample Tests
§2.3.4 Discussions

§2.4 Inference Based on Two-Samples

Part 3. Important Topics in Statistics (Chp 10-13) Part 4. Further Topics (Selected from Chp 14-16)

Some Logistics.

- ► Homework 4 has been assigned. It's due on Monday next week.
- Midterm 1 has been marked, and exam papers were distributed after the tutorial yesterday.

§2.3.2 Tests about Population Mean (Chp 8.2 and 8.3)

 $H_0: \mu = \mu_0$

2.3.2A When Population is Normal (Chp 8.2): $X \sim N(\mu, \sigma^2)$ If σ^2 is known,

test statistic.

$$Z=rac{ar{X}-\mu_0}{\sigma/\sqrt{n}}\sim {\sf N}(0,1)$$
 under ${\sf H}_0$

► rejection region. with pre-determined
$$\alpha$$

(i) when $H_1 : \mu \neq \mu_0$: $\mathcal{R} = \{z : |z| > z_{\alpha/2}\}$
(ii) when $H_1 : \mu < \mu_0$: $\mathcal{R} = \{z : z < -z_{\alpha}\}$
(iii) when $H_1 : \mu > \mu_0$: $\mathcal{R} = \{z : z > z_{\alpha}\}$

• making decision. Reject H_0 if $Z_{obs} \in \mathcal{R}$; otherwise, accept H_0 .

If σ^2 is unknown,

test statistic.

$$T=rac{ar{X}-\mu_0}{S/\sqrt{n}}\sim t(n-1)$$
 under H_0

 S^2 is the sample variance.

► rejection region, with pre-determined α (i) when $H_1 : \mu \neq \mu_0$: $\mathcal{R} = \{t : |t| > t_{\alpha/2}(n-1)\}$ (ii) when $H_1 : \mu < \mu_0$: $\mathcal{R} = \{t : t < -t_{\alpha}(n-1)\}$ (iii) when $H_1 : \mu > \mu_0$: $\mathcal{R} = \{t : t > t_{\alpha}(n-1)\}$

• making decision. Reject H_0 if $T_{obs} \in \mathcal{R}$; otherwise, accept H_0 .

2.3.2B When Population is Bernoulli (Chp 8.3) Setup:

- $X \sim B(1, p)$
- $H_0: \mu = \mu_0$ is then $H_0: p = p_0$
- a random sample $\{X_1, \ldots, X_n\}$

Testing procedure:

Step 1. to construct test statistic.

 $Y = \sum_{i=1}^{n} X_i \sim B(n, p_0)$ under H_0

Step 2. to choose rejection region. with desired α

(i) if
$$H_1: p \neq p_0$$
: to choose c_1, c_2 such that
 $P(Y < c_1|H_0) = \alpha/2, P(Y > c_2|H_0) = \alpha/2.$
 $\Rightarrow \mathcal{R} = \{y: y < c_1 \text{ or } y > c_2\};$
(ii) if $H_1: p < p_0$: to choose c such that $P(Y < c|H_0) = \alpha$,
 $\Rightarrow \mathcal{R} = \{y: y < c\}$
(iii) if $H_1: p > p_0$: to choose c such that $P(Y > c|H_0) = \alpha$,
 $\Rightarrow \mathcal{R} = \{y: y > c\};$

Step 3. to make decision:

 $\begin{array}{l} \text{if } Y_{obs} \in \mathcal{R}, \text{ reject } H_0; \\ \text{if } Y_{obs} \notin \mathcal{R}, \text{ do not reject } H_0. \end{array} \end{array}$

2.3.2C When *n* is large (Chp 8.2 and 8.3)

Recall, if $n \gg 1$,

• By CLT, $\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$ approximately. Equivalently,

$$rac{ar{X}-\mu}{\sigma/\sqrt{n}}\sim \mathsf{N}(0,1)$$

approximately.

Further, $\frac{\bar{X}-\mu}{S/\sqrt{n}} \sim t(n-1)$ approximately: $t(n-1) \approx N(0,1)$ now. Thus, approximately

$$rac{ar{X}-\mu}{S/\sqrt{n}}\sim N(0,1).$$

 \Rightarrow When $n\gg1$ and for any population disn,

• use
$$T = \frac{X-\mu_0}{s/\sqrt{n}} \sim N(0,1)$$
 as the test statistic for $H_0: \mu = \mu_0$

use the procedure in 2.3.2A to determine R

§2.3.3* Large Sample Tests

Setup:

- Population. r.v. $X \sim F(\cdot; \theta)$
- ▶ Data. a random sample of size $n \gg 1$: $\{X_1, \ldots, X_n\}$
- ▶ Goal. to test on $H_0: \theta = \theta_0$ vs $H_1: \theta \neq \theta_0$ with desired α

2.3.3A Using MLE of θ : **Z-Test (Wald-Test) Recall** that if $\hat{\theta}$ is the MLE, $\hat{\theta} \sim N(\theta, 1/n\mathcal{I}(\theta))$ approximately if $n \gg 1$. *test statistic:* $Z = \frac{\hat{\theta} - \theta_0}{\sqrt{1/n\mathcal{I}(\theta_0)}} \sim N(0, 1)$ approximately under H_0 .

rejection region:

decision making:

2.3.3B Likelihood Ratio Testing (LRT)

Test statistic: Consider

$$R(\theta_0) = \frac{L(\theta_0|X_1, \dots, X_n)}{\max_{\theta} L(\theta|X_1, \dots, X_n)} = \frac{L(\theta_0)}{L(\hat{\theta})}$$

- 0 ≤ R(θ₀) ≤ 1: the value of R(θ₀) tells how likely the population where the data are from has θ = θ₀, compared to the situation with the highest possibility
- Under $H_0: \theta = \theta_0$, if $n \gg 1$, approximately

$$W = -2\ln R(\theta_0) \sim \chi^2(1)$$

 $\implies R(\theta_0)$ a test statistic!

Rejection region: $\mathcal{R} = \{w : w > c\}$ with $P_{H_0}(W > c) = \alpha$

Example 4.5

- **Study.** wine bottles's contamination.
- Data. 16 of 91 bottles were contaminated
- Formulation. r.v. X ~ B(1, p) with p the prob of a bottle is contaminated; to test H₀ : p = .15 vs H₁ : p ≠ .15 using α = 0.1

Testing.

(i) Using
$$\hat{p}$$
's approximate distribution (Z-test)

$$L(p|\text{data}) = \prod_{i=1}^{91} p^{X_i} (1-p)^{1-X_i} = p^{\sum X_i} (1-p)^{91-\sum X_i}$$

$$\ln L(p) = (\sum X_i) \ln p + (91 - \sum X_i) \ln(1-p)$$
All E of $p: \hat{p} = \sum X_i / 91 \approx N(p, p(1-p)/91)$ approximately

 \Rightarrow MLE of *p*: $\hat{p} = \sum X_i/91 \sim N(p, p(1-p)/91)$ approximately, taking 91 $\gg 1$.

Test statistic: approximately under H_0 ,

$$Z = rac{\hat{
ho} - .15}{\sqrt{.15(1 - .15)/91}} \sim N(0, 1)$$

Rejection region: with $\alpha = .1$, to choose c such that $P_{H_0}(|Z| > c) = .1$; $\mathcal{R} = \{z : |z| > z_{0.05} = 1.645\}$. Making decision:

$$Z_{obs} = (16/91 - .15)/\sqrt{.15(1 - .15)/91} = .69
ot\in \mathcal{R}$$

and thus do not reject the null hypothesis.

(ii) Likelihood ratio test: $R(p_0) = L(0.15)/L(\hat{p})$

Test statistic:

$$W=-2\ln R(p_0)\sim \chi^2(1)$$

approximately under H_0 .

Rejection region: with $\alpha = .1$, to choose c such that $P_{H_0}(W > c) = 0.1$; c = 2.706; $\mathcal{R} = \{w : w > c\}$. Making decision: $W_{obs} = 0.455 \notin \mathcal{R}$ and do not reject H_0 .

Remarks:

- ▶ Both Z-test (Wald-test) and likelihood ratio test (LRT) require a large sample in general: they are based on the approximate distributions of the test statistics under H₀ when n ≫ 1.
- The score-test, a different likelihood-based testing procedure, requires a large sample, too.
- Relatively to the Z-test, the LRT requires smaller sample, and is more efficient.
- How to select a testing procedure?

§2.3.4 Discussion

2.3.4A. A duality between CI and hypothesis test

Suppose $(\hat{\theta}_L, \hat{\theta}_U)$ is a CI of θ with level of $1 - \alpha$.

 \implies Reject $H_0: \theta = \theta_0$ if $\theta_0 \notin (\hat{\theta}_L, \hat{\theta}_U)$.

This testing has a type I error rate of α at most.

Suppose a hypothesis test has the test statistic T = T(θ₀; data) and the rejection region R with type I error rate of α.

 \implies The set of θ values, $\{\theta : T(\theta; data) \notin \mathcal{R}\}$, is a CI of θ with level at least $1 - \alpha$.

Example 4.6 $X \sim N(\mu, 1)$ with X_1, \ldots, X_n .

• Recall that a 95% CI of
$$\mu$$
 is $\bar{X} \pm \frac{1.96}{\sqrt{n}}$.
 \Rightarrow to test $H_0: \mu = 0$ vs $H_1: \mu \neq 0$ is to check if $0 \in (\bar{X} - \frac{1.96}{\sqrt{n}}, \bar{X} + \frac{1.96}{\sqrt{n}})$.
This testing's type I error rate is

$$P_{H_0}(0 \notin CI) = P_{H_0}(\bar{X} > \frac{1.96}{\sqrt{n}}) + P_{H_0}(\bar{X} < -\frac{1.96}{\sqrt{n}}) = 0.05$$

▶ Recall that the test on $H_0: \mu = 0$ vs $H_1: \mu \neq 0$ with test statistic $Z = \frac{\bar{X} - 0}{1/\sqrt{n}}$ has the rejection region $\mathcal{R} = \{z: |z| > 1.96\}$ when $\alpha = 0.05$. \Rightarrow to construct a 95% CI is to obtain $\{\mu: |\frac{\bar{X} - \mu}{1/\sqrt{n}}| \notin \mathcal{R}\}$, which is \bar{X} where 1.06

$$\{\mu: |\frac{X-\mu}{1/\sqrt{n}}| \le 1.96\} = (\bar{X} - \frac{1.96}{\sqrt{n}}, \bar{X} + \frac{1.96}{\sqrt{n}}).$$

▶ If n = 100 and $\bar{x} = -0.2$: 95% CI of μ is (-0.396, -0.004); $Z_{obs} = -2 \in \mathcal{R} = \{z : |z| > 1.96\}.$

2.3.4B Significance test

making inference vs making decision

practical consideration?

significance test:

(a) to calculate the p-value – the probability of obtaining a test statistic at least as extreme as the one that was actually observed under H_0

(b) if the p-value is small (usually using ≤ 0.05), conclude that there is strong evidence against H_0 ; otherwise, conclude that there is no strong evidence against H_0

Comparison with decision making: difference and connection

Given a test on H₀ vs H₁ with T, R with rate of type I error (significance level) α: reject or fail to reject H₀ based on T_{obs} ∈ R or T_{obs} ∉ R, respectively.
 ⇒ The p-value of the significance test using the same test statistic and data must be not larger than α or larger than α,

respectively.

Given a significance test on H₀ vs H₁ using T with p-value calculated: conclude there is strong evidence against H₀ if p-value < α</p>

 $\Rightarrow \text{Then } T_{obs} \in \mathcal{R}: \ \mathcal{R} \text{ is constructed using } T \text{ and } \alpha \text{ in the corresponding hypothesis test.}$

Example 4.6 (cont'd)

 $X \sim N(\mu, 1)$ with X_1, \ldots, X_{100} . To test on $H_0: \mu = 0$ vs $H_1: \mu < 0$ with $\alpha = 0.05$ (rate of type I error or significance level), when $\bar{x} = -0.2$.

• Recall that
$$Z = (\bar{X} - 0) / \frac{1}{\sqrt{n}} \sim N(0, 1)$$
 under H_0 .

▶ hypothesis testing: $\mathcal{R} = \{z : z < -z_{0.05}\} = \{z : z < -1.65\};$ $Z_{obs} = -0.2/(1/\sqrt{100}) = -2 \in \mathcal{R};$ reject H_0

▶ significance test: p-value= P_{H0}(Z < Z_{obs}) = 0.023 < 0.05; the data show strong evidence against H₀.

What will we study next?

Part 1. Introduction and Review (Chp 1-5)

Part 2. Basic Statistical Inference (Chp 6-9)

§2.1. Point Estimation (Chp 6)

§2.2. Interval Estimation (Chp 7)

§2.3. One-Sample Tests of Hypotheses (Chp 8)

§2.4. Two-Sample Tests of Hypotheses (Chp 9)

- §2.4.1 Population Means with Normal Populations
- §2.4.2 Population Means Based on Large Sample

§2.4.3 Inferences on Two Population Variances

Part 3. Important Topics in Statistics (Chp 10-13)

Part 4. Further Topics (Selected from Chp 14-16)