What to do today (Feb 7, 2023)?

 Part 1. Introduction and Review (Chp 1-5) Part 2. Basic Statistical Inference (Chp 6-9)§2.1 Point Estimation (Chp 6)
§2.2 Interval Estimation (Chp 7)
§2.3 One-Sample Tests of Hypotheses (Chp 8)
§2.3.1 Introduction and Basic Concepts
§2.3.2 Tests about Population Mean
§2.3.3* Large Sample Tests
§2.3.4 Discussions
§2.4 Inference Based on Two-Samples
Part 3. Important Topics in Statistics (Chp 10-13) Part 4. Further Topics (Selected from Chp 14-16)

Some Logistics.

- Homework 4 has been assigned. It's due on Monday next week.
- Midterm 1 has been marked, and exam papers were distributed after the tutorial yesterday.

§2.3.2 Tests about Population Mean (Chp 8.2 and 8.3)

$H_{0}: \mu=\mu_{0}$
2.3.2A When Population is Normal (Chp 8.2): $X \sim N\left(\mu, \sigma^{2}\right)$

If σ^{2} is known,

- test statistic.

$$
Z=\frac{\bar{X}-\mu_{0}}{\sigma / \sqrt{n}} \sim N(0,1) \text { under } H_{0}
$$

- rejection region. with pre-determined α
(i) when $H_{1}: \mu \neq \mu_{0}: \mathcal{R}=\left\{z:|z|>z_{\alpha / 2}\right\}$
(ii) when $H_{1}: \mu<\mu_{0}: \mathcal{R}=\left\{z: z<-z_{\alpha}\right\}$
(iii) when $H_{1}: \mu>\mu_{0}: \mathcal{R}=\left\{z: z>z_{\alpha}\right\}$
- making decision. Reject H_{0} if $Z_{\text {obs }} \in \mathcal{R}$; otherwise, accept H_{0}.

If σ^{2} is unknown,

- test statistic.

$$
T=\frac{\bar{X}-\mu_{0}}{S / \sqrt{n}} \sim t(n-1) \text { under } H_{0}
$$

S^{2} is the sample variance.
\rightarrow rejection region, with pre-determined α
(i) when $H_{1}: \mu \neq \mu_{0}: \mathcal{R}=\left\{t:|t|>t_{\alpha / 2}(n-1)\right\}$
(ii) when $H_{1}: \mu<\mu_{0}: \mathcal{R}=\left\{t: t<-t_{\alpha}(n-1)\right\}$
(iii) when $H_{1}: \mu>\mu_{0}: \mathcal{R}=\left\{t: t>t_{\alpha}(n-1)\right\}$

- making decision. Reject H_{0} if $T_{o b s} \in \mathcal{R}$; otherwise, accept H_{0}.

2.3.2B When Population is Bernoulli (Chp 8.3)
 Setup:

- $X \sim B(1, p)$
- $H_{0}: \mu=\mu_{0}$ is then $H_{0}: p=p_{0}$
- a random sample $\left\{X_{1}, \ldots, X_{n}\right\}$

Testing procedure:

- Step 1. to construct test statistic.

$$
Y=\sum_{i=1}^{n} X_{i} \sim B\left(n, p_{0}\right) \text { under } H_{0}
$$

- Step 2. to choose rejection region. with desired α
(i) if $H_{1}: p \neq p_{0}$: to choose c_{1}, c_{2} such that
$P\left(Y<c_{1} \mid H_{0}\right)=\alpha / 2, P\left(Y>c_{2} \mid H_{0}\right)=\alpha / 2$.
$\Rightarrow \mathcal{R}=\left\{y: y<c_{1}\right.$ or $\left.y>c_{2}\right\}$;
(ii) if $H_{1}: p<p_{0}$: to choose c such that $P\left(Y<c \mid H_{0}\right)=\alpha$, $\Rightarrow \mathcal{R}=\{y: y<c\}$
(iii) if $H_{1}: p>p_{0}$: to choose c such that $P\left(Y>c \mid H_{0}\right)=\alpha$, $\Rightarrow \mathcal{R}=\{y: y>c\}$;
- Step 3. to make decision:
if $Y_{\text {obs }} \in \mathcal{R}$, reject H_{0};
if $Y_{\text {obs }} \notin \mathcal{R}$, do not reject H_{0}.

2.3.2C When n is large (Chp 8.2 and 8.3)

Recall, if $n \gg 1$,

- By CLT, $\bar{X} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right)$ approximately. Equivalently,

$$
\frac{\bar{x}-\mu}{\sigma / \sqrt{n}} \sim N(0,1)
$$

approximately.

- Further, $\frac{\bar{x}-\mu}{s / \sqrt{n}} \sim t(n-1)$ approximately: $t(n-1) \approx N(0,1)$ now. Thus, approximately

$$
\frac{\bar{X}-\mu}{S / \sqrt{n}} \sim N(0,1)
$$

\Rightarrow When $n \gg 1$ and for any population disn,

- use $T=\frac{\bar{x}-\mu_{0}}{s / \sqrt{n}} \sim N(0,1)$ as the test statistic for $H_{0}: \mu=\mu_{0}$
- use the procedure in 2.3.2A to determine \mathcal{R}

§2.3.3* Large Sample Tests

Setup:

- Population. r.v. $X \sim F(\cdot ; \theta)$
- Data. a random sample of size $n \gg 1:\left\{X_{1}, \ldots, X_{n}\right\}$
- Goal. to test on $H_{0}: \theta=\theta_{0}$ vs $H_{1}: \theta \neq \theta_{0}$ with desired α

2.3.3A Using MLE of θ : Z-Test (Wald-Test)

Recall that if $\hat{\theta}$ is the MLE, $\hat{\theta} \sim N(\theta, 1 / n \mathcal{I}(\theta))$ approximately if $n \gg 1$.
test statistic: $\quad Z=\frac{\hat{\theta}-\theta_{0}}{\sqrt{1 / n \mathcal{I}\left(\theta_{0}\right)}} \sim N(0,1)$ approximately under H_{0}.
rejection region:
decision making:

2.3.3B Likelihood Ratio Testing (LRT)

Test statistic:
Consider

$$
R\left(\theta_{0}\right)=\frac{L\left(\theta_{0} \mid X_{1}, \ldots, X_{n}\right)}{\max _{\theta} L\left(\theta \mid X_{1}, \ldots, X_{n}\right)}=\frac{L\left(\theta_{0}\right)}{L(\hat{\theta})}
$$

- $0 \leq R\left(\theta_{0}\right) \leq 1$: the value of $R\left(\theta_{0}\right)$ tells how likely the population where the data are from has $\theta=\theta_{0}$, compared to the situation with the highest possibility
- Under $H_{0}: \theta=\theta_{0}$, if $n \gg 1$, approximately

$$
W=-2 \ln R\left(\theta_{0}\right) \sim \chi^{2}(1)
$$

$\Longrightarrow R\left(\theta_{0}\right)$ a test statistic!

Rejection region: $\mathcal{R}=\{w: w>c\}$ with $P_{H_{0}}(W>c)=\alpha$

Example 4.5

- Study. wine bottles's contamination.
- Data. 16 of 91 bottles were contaminated
- Formulation. r.v. $X \sim B(1, p)$ with p the prob of a bottle is contaminated; to test $H_{0}: p=.15$ vs $H_{1}: p \neq .15$ using $\alpha=0.1$
- Testing.
(i) Using \hat{p} 's approximate distribution (Z-test)

$$
\begin{aligned}
L(p \mid \text { data }) & =\prod_{i=1}^{91} p^{X_{i}}(1-p)^{1-X_{i}}=p^{\sum X_{i}}(1-p)^{91-\sum X_{i}} \\
\ln L(p) & =\left(\sum X_{i}\right) \ln p+\left(91-\sum X_{i}\right) \ln (1-p)
\end{aligned}
$$

\Rightarrow MLE of $p: \hat{p}=\sum X_{i} / 91 \sim N(p, p(1-p) / 91)$ approximately, taking $91 \gg 1$.

Test statistic: approximately under H_{0},

$$
Z=\frac{\hat{p}-.15}{\sqrt{.15(1-.15) / 91}} \sim N(0,1)
$$

Rejection region: with $\alpha=.1$, to choose c such that $P_{H_{0}}(|Z|>c)=.1 ; \mathcal{R}=\left\{z:|z|>z_{0.05}=1.645\right\}$.
Making decision:

$$
Z_{o b s}=(16 / 91-.15) / \sqrt{.15(1-.15) / 91}=.69 \notin \mathcal{R}
$$

and thus do not reject the null hypothesis.
(ii) Likelihood ratio test: $R\left(p_{0}\right)=L(0.15) / L(\hat{p})$

Test statistic:

$$
W=-2 \ln R\left(p_{0}\right) \sim \chi^{2}(1)
$$

approximately under H_{0}.
Rejection region: with $\alpha=.1$, to choose c such that
$P_{H_{0}}(W>c)=0.1 ; c=2.706 ; \mathcal{R}=\{w: w>c\}$.
Making decision: $W_{o b s}=0.455 \notin \mathcal{R}$ and do not reject H_{0}.

Remarks:

- Both Z-test (Wald-test) and likelihood ratio test (LRT) require a large sample in general: they are based on the approximate distributions of the test statistics under H_{0} when $n \gg 1$.
- The score-test, a different likelihood-based testing procedure, requires a large sample, too.
- Relatively to the Z-test, the LRT requires smaller sample, and is more efficient.
- How to select a testing procedure?

§2.3.4 Discussion

2.3.4A. A duality between Cl and hypothesis test

- Suppose $\left(\hat{\theta}_{L}, \hat{\theta}_{U}\right)$ is a Cl of θ with level of $1-\alpha$.
\Longrightarrow Reject $H_{0}: \theta=\theta_{0}$ if $\theta_{0} \notin\left(\hat{\theta}_{L}, \hat{\theta}_{U}\right)$.
This testing has a type I error rate of α at most.
- Suppose a hypothesis test has the test statistic $T=T\left(\theta_{0} ;\right.$ data $)$ and the rejection region \mathcal{R} with type I error rate of α.
\Longrightarrow The set of θ values, $\{\theta: T(\theta$; data $) \notin \mathcal{R}\}$, is a Cl of θ with level at least $1-\alpha$.

Example 4.6 $X \sim N(\mu, 1)$ with X_{1}, \ldots, X_{n}.

- Recall that a $95 \% \mathrm{Cl}$ of μ is $\bar{X} \pm \frac{1.96}{\sqrt{n}}$.
\Rightarrow to test $H_{0}: \mu=0$ vs $H_{1}: \mu \neq 0$ is to check if $0 \in\left(\bar{X}-\frac{1.96}{\sqrt{n}}, \bar{X}+\frac{1.96}{\sqrt{n}}\right)$.
This testing's type I error rate is

$$
P_{H_{0}}(0 \notin \mathrm{Cl})=P_{H_{0}}\left(\bar{X}>\frac{1.96}{\sqrt{n}}\right)+P_{H_{0}}\left(\bar{X}<-\frac{1.96}{\sqrt{n}}\right)=0.05
$$

- Recall that the test on $H_{0}: \mu=0$ vs $H_{1}: \mu \neq 0$ with test statistic $Z=\frac{\bar{X}-0}{1 / \sqrt{n}}$ has the rejection region $\mathcal{R}=\{z:|z|>1.96\}$ when $\alpha=0.05$.
\Rightarrow to construct a $95 \% \mathrm{Cl}$ is to obtain $\left\{\mu:\left|\frac{\bar{X}-\mu}{1 / \sqrt{n}}\right| \notin \mathcal{R}\right\}$, which is

$$
\left\{\mu:\left|\frac{\bar{X}-\mu}{1 / \sqrt{n}}\right| \leq 1.96\right\}=\left(\bar{X}-\frac{1.96}{\sqrt{n}}, \bar{X}+\frac{1.96}{\sqrt{n}}\right)
$$

- If $n=100$ and $\bar{x}=-0.2: 95 \% \mathrm{Cl}$ of μ is $(-0.396,-0.004)$;

$$
Z_{o b s}=-2 \in \mathcal{R}=\{z:|z|>1.96\} .
$$

2.3.4B Significance test

- making inference vs making decision
practical consideration?
- significance test:
(a) to calculate the p-value - the probability of obtaining a test statistic at least as extreme as the one that was actually observed under H_{0}
(b) if the p-value is small (usually using ≤ 0.05), conclude that there is strong evidence against H_{0}; otherwise, conclude that there is no strong evidence against H_{0}

Comparison with decision making: difference and connection

- Given a test on H_{0} vs H_{1} with T, \mathcal{R} with rate of type I error (significance level) α : reject or fail to reject H_{0} based on $T_{\text {obs }} \in \mathcal{R}$ or $T_{\text {obs }} \notin \mathcal{R}$, respectively.
\Rightarrow The p -value of the significance test using the same test statistic and data must be not larger than α or larger than α, respectively.
- Given a significance test on H_{0} vs H_{1} using T with p-value calculated: conclude there is strong evidence against H_{0} if p -value $<\alpha$
\Rightarrow Then $T_{o b s} \in \mathcal{R}: \mathcal{R}$ is constructed using T and α in the corresponding hypothesis test.

Example 4.6 (cont'd)

$X \sim N(\mu, 1)$ with X_{1}, \ldots, X_{100}.
To test on $H_{0}: \mu=0$ vs $H_{1}: \mu<0$ with $\alpha=0.05$ (rate of type I error or significance level), when $\bar{x}=-0.2$.

- Recall that $Z=(\bar{X}-0) / \frac{1}{\sqrt{n}} \sim N(0,1)$ under H_{0}.
- hypothesis testing:

$$
\begin{aligned}
& \mathcal{R}=\left\{z: z<-z_{0.05}\right\}=\{z: z<-1.65\} \\
& Z_{\text {obs }}=-0.2 /(1 / \sqrt{100})=-2 \in \mathcal{R} ; \text { reject } H_{0}
\end{aligned}
$$

- significance test:
p-value $=P_{H_{0}}\left(Z<Z_{o b s}\right)=0.023<0.05$; the data show strong evidence against H_{0}.

What will we study next?

Part 1. Introduction and Review (Chp 1-5)
Part 2. Basic Statistical Inference (Chp 6-9)
§2.1. Point Estimation (Chp 6)
§2.2. Interval Estimation (Chp 7)
§2.3. One-Sample Tests of Hypotheses (Chp 8)
§2.4. Two-Sample Tests of Hypotheses (Chp 9)

- §2.4.1 Population Means with Normal Populations
- §2.4.2 Population Means Based on Large Sample
- §2.4.3 Inferences on Two Population Variances

Part 3. Important Topics in Statistics (Chp 10-13)
Part 4. Further Topics (Selected from Chp 14-16)

