What to do today (Feb 17, 2023)? Part 1. Introduction and Review (Chp 1-5) Part 2. Basic Statistical Inference (Chp 6-9) Part 3. Important Topics in Statistics (Chp 10-13)

§3.1. Analysis of Variance (ANOVA, Chp 10-11) §3.1.1 Introduction §3.1.2 One-Factor ANOVA (Chp 10) §3.1.3 Multi-Factor ANOVA (Chp 11) §3.1.4 Further Topics on ANOVA §3.2 Introduction to Regression Analysis (Chp 12-13)

Part 4. Further Topics (Selected from Chp 14-16)

Some Logistics.

- Homework 5 has been assigned. It's due on Monday of the next week, the reading week.
- There will be no class on Tue and Thu next week.

STAT-285 Outline

Part 1. Introduction and Review

Part 2. (Chp 6-9)

basic in statistics in general; essential to stat285 in particular

Part 3. Important Topics in Statistics (Chp 10-13)

§3.1A One-Factor Analysis of Variance (ANOVA) (Chp 10)

§3.1B Multi-Factor ANOVA (Chp 11)

§3.2A Simple Linear Regression Analysis (Chp 12)

§3.2B More on Regression (Chp 13)

Part 4. Selected Topics in Statistics (from Chp 14-16)

§3.1. Analysis of Variance (ANOVA, Chp 10-11)

§3.1.1 Introduction

multiple comparisons (multiple-sample problems)

why ANOVA?

§3.1.2 One-Factor ANOVA (Chp 10)

§3.1.3 Two-Factor ANOVA (Chp 11)

§3.1.4 Discussion

§3.1.1 Introduction

Recall

• One-Sample Problem:

to estimate/assess about θ in a population distn, such as $\mu = E(X)$ or $\sigma^2 = V(X)$

Two-Sample Problem:

to compare two populations regarding their parameters, such as $\mu_1 = E(X_1)$ vs $\mu_2 = E(X_2)$ $(H_0 : \mu_1 - \mu_2 = \Delta_0)$ or $\sigma_1^2 = V(X_1)$ vs $\sigma_2^2 = V(X_2)$ $(H_0 : \sigma_1^2 = \sigma_2^2)$

What is a multi-sample problem?

to compare multiple populations regarding their population parameters, such as their means: $\mu_1 = E(X_1)$ vs ... vs $\mu_I = E(X_I)$ $(H_0: \mu_1 = \ldots = \mu_I)$

How to conduct such a comparison?

For example, testing $H_0: \mu_1 = \mu_2 = \mu_3$ at level α ?

formulating ...

- Hypotheses. $H_0: \mu_1 = \mu_2 = \mu_3$ vs $H_1:$ otherwise
- ► Populations. Independent $X_1 \sim N(\mu_1, \sigma^2)$, $X_2 \sim N(\mu_2, \sigma^2)$, $X_3 \sim N(\mu_3, \sigma^2)$
- ▶ Data. $\{X_{11}, ..., X_{1n_1}\}$, $\{X_{21}, ..., X_{2n_2}\}$, $\{X_{31}, ..., X_{3n_3}\}$ random samples from the populations, respectively.

How to test H_0 vs H_1 at level of α ?

A natural approach.

▶ Re-formulting ... $H_0 \Leftrightarrow H_{01} : \mu_1 = \mu_2, H_{02} : \mu_2 = \mu_3$, and $H_{03} : \mu_3 = \mu_1$ (Why not H_{01} and $H_{02} \Leftrightarrow H_0$?)

 \implies pairwise comparisons, each by a t-test, the test statistics:

$$T_1 = \frac{\bar{X}_1 - \bar{X}_2}{\sqrt{S^2(1/n_1 + 1/n_2)}}, \quad T_2 = \frac{\bar{X}_2 - \bar{X}_3}{\sqrt{S^2(1/n_2 + 1/n_3)}},$$
$$T_3 = \frac{\bar{X}_3 - \bar{X}_1}{\sqrt{S^2(1/n_3 + 1/n_1)}}$$

• to combine all the three test outcomes to conclude about H_0 and keep significance level (type I error rate) α : $P_{H_0}(T_1 > c_1 \text{ or } T_2 > c_2 \text{ or } T_3 > c_3) \le \alpha$,thus $P_{H_0j}(T_j > c_j) = \alpha^* < \alpha \text{ for } j = 1, 2, 3.$ \implies "Bonferroni adjustment for multiple comparisons" $\alpha^* = \alpha/3$ (conservative, why?) In general,

$$I = 2 \implies 1 \text{ test}$$

$$I = 3 \implies \begin{pmatrix} 3 \\ 2 \end{pmatrix} = 3 \text{ tests: each with } \alpha^* = \alpha/3$$

$$I = 4 \implies \begin{pmatrix} 4 \\ 2 \end{pmatrix} = 6 \text{ tests}$$

$$\dots$$

$$I = 10 \implies \begin{pmatrix} 10 \\ 2 \end{pmatrix} = 45 \text{ tests: each with } \alpha^* = \alpha/45$$

$$\dots$$

impractical: computing? efficiency?

Can we test on H_0 by a single test? \implies One-Factor (One-Way) ANOVA!

- to compare several populations, viewing them as classified following one factor or in one way
 e.g., young vs middle aged vs old adults in weight
 ⇒ One-Factor (One-Way) ANOVA!
- what if to compare several populations, classified in two ways?
 e.g., by gender and age
 True Factor (True March) ANOVA
 - \implies Two-Factor (Two-Way) ANOVA
- how about to compare several popluations, classified in multiple ways?

e.g., by gender, age and education

 \implies Multi-Factor (Multi-Way) ANOVA

What will we study next?

Part 1. Introduction and Review (Chp 1-5)

Part 2. Basic Statistical Inference (Chp 6-9)

Part 3. Important Topics in Statistics (Chp 10-13) 3.1A One-Factor Analysis of Variance (Chp 10) 3.1B Multi-Factor ANOVA (Chp 11) 3.2A Simple Linear Regression Analysis (Chp 12) 3.2B More on Regression (Chp 13)

Part 4. Further Topics (Selected from Chp 14-16)