What to do today (March 3, 2023)? Part 1. Introduction and Review (Chp 1-5) Part 2. Basic Statistical Inference (Chp 6-9) Part 3. Important Topics in Statistics (Chp 10-13)

```
§3.1. Analysis of Variance (ANOVA, Chp 10-11)
§3.1.1 Introduction
§3.1.2 One-Factor ANOVA (Chp 10)
§3.1.3 Multi-Factor ANOVA (Chp 11)
§3.1.4 Further Topics on ANOVA
§3.2 Introduction to Regression Analysis (Chp 12-13)
```

Part 4. Further Topics (Selected from Chp 14-16)

Some Logistics.

- ► Homework 6 has been assigned. It's due on Monday March 6.
- ▶ Midterm 2 will be on Friday March 10, to cover Chp 6-11.

§3.1. Analysis of Variance (ANOVA, Chp 10-11)

§3.1.1 Introduction

- multiple comparisons (multiple-sample problems)
- why ANOVA?

§3.1.2 One-Factor ANOVA (Chp 10)

§3.1.3 Two-Factor ANOVA (Chp 11)

§3.1.4 Discussion

3.1.2 One-Factor ANOVA

Setting.

- (i) A study is concerned with one factor with I levels, to answer whether the outcomes are closely associated with the factor.
 - e.g., to study voting trend according to education with 4 levels: less than high-school, high-school graduate, colledge/univeristy degree, post-graduate degree
- (ii) Observations: jth obs in ith group X_{ij} , $j=1,\ldots,n_i$ and $i=1,\ldots,I$ ($n_i\equiv n$, balanced study)

	1	2	3	 - 1	Total
	X ₁₁	$X_{21} X_{22}$	X ₃₁	 X_{I1}	
	X_{12}	X_{22}	X_{32}	 X_{I2}	
		• • •		 • • •	
	X_{1n}	X_{2n}	X_{3n}	 X_{In}	
Total	$X_{1.}$	$X_{2.}$	X _{3.}	 $X_{I.}$	X
Mean	$\bar{X}_{1.}$	$\bar{X}_{2.}$	$\bar{X}_{3.}$	 $\bar{X}_{I.}$	$\bar{X}_{}$

Formulation.

- (i) $X_1, ..., X_I$ are independent, and associated with the I groups' outcomes: $X_i \sim N(\mu_i, \sigma^2)$
- (ii) To test $H_0: \mu_1 = \ldots = \mu_I$ vs $H_1:$ otherwise
 - One-Factor ANOVA Model.

$$X_{ii} = \mu_i + \epsilon_{ii}$$
, with $\epsilon_{ii} \sim N(0, \sigma^2)$ iid,

$$j = 1, ..., n_i \text{ and } i = 1, ..., I$$

Summary Statistics.

(i) Sample Means.

[i.a]. Sample mean of the ith group: i = 1, ..., I,

$$\bar{X}_{i.} = \frac{\sum_{j=1}^{n_i} X_{ij}}{n_i}; \quad E(\bar{X}_{i.}) = \mu_i$$

[i.b]. Overall (grand) sample mean:

$$ar{X}_{..} = rac{\sum_{i=1}^{I} \sum_{j=1}^{n_i} X_{ij}}{\sum_{i=1}^{I} n_i}; \quad E(ar{X}_{..}) = rac{\sum_{i=1}^{I} n_i \mu_i}{\sum_{i=1}^{I} n_i}$$

 $E(\bar{X}_i) = \mu_i$ is $\sum_{i=1}^{I} \mu_i / I$ if $n_i \equiv n$

(ii) Sum of Squares.

$$SS_T = \sum_{i=1}^{I} \sum_{i=1}^{n_i} (X_{ij} - \bar{X}_{..})^2 = \sum_{i=1}^{I} \sum_{i=1}^{n_i} X_{ij}^2 - n_T \bar{X}_{..}^2$$

 $n_T = \sum_{i=1}^{l} n_i$, the total number of study observations.

[ii.b]. Sum squares error: (Variation due to individual fluctuation)
$$SS_e = \sum_{i=1}^{I} \sum_{i=1}^{n_i} (X_{ij} - \bar{X}_{i.})^2 = \sum_{i=1}^{I} \left\{ \sum_{i=1}^{n_i} X_{ij}^2 - n_i \bar{X}_{i.}^2 \right\}$$

[ii.c]. Sum squares treatment: (Variation due to factor's diff levels)

$$SS_{tr} = \sum_{i=1}^{I} \sum_{j=1}^{n_i} (\bar{X}_{i.} - \bar{X}_{..})^2 = \sum_{i=1}^{I} n_i (\bar{X}_{i.} - \bar{X}_{..})^2$$

 $= \sum_{i=1}^{I} n_i \bar{X}_{i.}^2 - n_T \bar{X}_{..}^2$

(iii) Relationship.

$$X_{ij} = \mu_i + \epsilon_{ij} : \quad \epsilon_{ij} \sim N(0, \sigma^2)$$

$$X_{ij} - \bar{X}_{..} = (X_{ij} - \bar{X}_{i.}) + (\bar{X}_{i.} - \bar{X}_{..})$$

$$\implies \sum_{i} \sum_{j} (X_{ij} - \bar{X}_{..})^{2} = \sum_{i} \sum_{j} (X_{ij} - \bar{X}_{i.})^{2} + \sum_{i} n_{i} (\bar{X}_{i.} - \bar{X}_{..})^{2}$$

 $SS_{\tau} = SS_{\alpha} + SS_{tr}$

$$E\{SS_e/(n_T-I)\} = \sigma^2$$

with $n_T = \sum_{i=1}^{I} n_i$: it's nI if $n_i \equiv n$.

$$E\{SS_{tr}/(I-1)\} = \sigma^2 + \frac{\sum_{i=1}^{I} n_i (\mu_i - \mu_i)^2}{I-1}$$

▶ **F-Test.** $H_0: \mu_1 = \ldots = \mu_I$ vs $H_1:$ otherwise

$$F = \frac{SS_{tr}/(I-1)}{SS_{c}/(n_{T}-I)} \sim F(I-1, n_{T}-I)$$

under H_0 .

At α -significance level, $c = f_{\alpha}(I - 1, n_T - I)$ such that $P_{H_0}(F > c) = \alpha$; reject H_0 if $F_{obs} > c$.

ANOVA Table.

Source of Variation	df	SS	MSS	F-value
factor	I-1	SS_{tr}	$\frac{SS_{tr}}{(I-1)}$	$F = \frac{MSS_{tr}}{MSS_e}$
error	$n_T - I$	SS_e	$\frac{SS_e}{(n_T-I)}$	
total	n_T-1	SS_T	$\frac{SS_T}{(n_T-1)}$	

Example 6.1

- ▶ **Study.** to compare 5 brands of automobile oil filters (I=5)
- **Data.** $n_i = 9$ outcomes with each brand
- **Formulation.** indpt $X_i \sim N(\mu_i, \sigma^2)$, i = 1, ..., 5; to test $H_0: \mu_1 = ... = \mu_5$ vs $H_1:$ otherwise at level $\alpha = 5\%$
- $H_0: \mu_1 = \ldots = \mu_5$ vs $H_1:$ otherwise at level $\alpha = 5\%$ NOVA table.

Source of Variation	df	SS	MSS	F-value
factor	5-1	13.32	3.33	$F_{obs} = 37.84$
error	45 - 5	3.53	0.088	
total	44	16.85		

Making inference.

$$f_{lpha}(4,40) = 2.60 < F_{obs} \Longrightarrow {\sf reject}\ H_0.$$

§3.1.2B More on Multiple Comparisons

(i) Tukey's Procedure

After One-factor ANOVA answers yes/no difference among I groups, Tukey's procedure identifies which two groups are different, using simultaneous CI of $\mu_i - \mu_j$, for any i,j

• Constructing CI: $\mu_i - \mu_j$'s $1 - \alpha$ CI is

$$(\bar{X}_{i.}-\bar{X}_{j.})\pm W_{ij}$$

 $W_{ij} = Q_{\alpha}(I, n_T - I) \sqrt{\frac{MSS_e}{2}(\frac{1}{n_i} + \frac{1}{n_j})}$ with $Q_{\alpha}(I, n_T - I)$ the upper-tail α critical value of the studentized range distn.

▶ Making inference: If $|\bar{X}_{i.} - \bar{X}_{j.}| > W_{ij}$, conclude μ_i and μ_j are significantly different at level α

§3.1.2B More on Multiple Comparisons

(ii). CI of Other Parameters in one-factor ANOVA

For example,

 \blacktriangleright to estimate $\theta = \sum_{i=1}^{I} c_i \mu_i$?

$$\hat{\theta} = \sum_{i=1}^{I} c_i \hat{\mu}_i = \sum_{i=1}^{I} c_i \bar{X}_{i.}$$

$$var(\hat{\theta}) = \sum_{i=1}^{I} c_i^2 var(\hat{\mu}_i) = \sum_{i=1}^{I} c_i^2 \frac{\sigma^2}{n_i} = \sum_{i=1}^{I} \frac{c_i^2}{n_i} \hat{\sigma}^2$$

$$\implies (1-\alpha)100\%$$
 CI of $\theta = \sum_{i=1}^{I} c_i \mu_i$:

$$\hat{ heta} \mp ME(\hat{ heta}) = \sum_{i=1}^{I} c_i \bar{X}_{i.} \mp t_{lpha/2} (n_T - I) \sqrt{\sum_{i=1}^{I} \frac{c_i^2}{n_i} MSE}$$

What will we study next?

- Part 1. Introduction and Review (Chp 1-5)
- Part 2. Basic Statistical Inference (Chp 6-9)
- Part 3. Important Topics in Statistics (Chp 10-13)
 - 3.1A One-Factor Analysis of Variance (Chp 10)
 - 3.1B Multi-Factor ANOVA (Chp 11)
 - 3.2A Simple Linear Regression Analysis (Chp 12)
 - 3.2B More on Regression (Chp 13)
- Part 4. Further Topics (Selected from Chp 14-16)