What to do today (Nov 23, 2020)?

- 1. Introduction
- 2. Probability and Distribution (Chp 1-3)
- 3. Essential Topics in Mathematical Statistics
 - 3.1 Elementary Statistical Inferences (Chp 4)
 - 3.2 Consistency and Limiting Distributions (Chp 5)
 - 3.3 Maximum Likelihood Methods (Chp 6)
- 4. Further Topics, Selected from Chp 7-11
 - ▶ 4.1 Nonparametric and Robust Statistics (Chp 10)
 - 4.1.1 Location Models
 - ▶ 4.1.2 Sample Median and the Sign Test
 - 4.1.3 Signed-Rank Test and Mann-Whitney-Wilcoxon Test
 - 4.1.4 Measures of Association
 - 4.1.5 Robust Concepts
 - ▶ 4.2 Bayesian Procedures (Chp 11)

4.1 Nonparametric and Robust Statistics (Chp 10)

Why to study nonparametrics? Why to study robust statistics?

Recall most statistical methods studied so far

- Specifying r.v. $X \sim f(\cdot; \theta)$
 - estimating θ ,
 - testing on hypotheses about θ
- Specifying r.v.s. $X \sim f(\cdot; \theta), Y \sim g(\cdot; \phi)$
 - \blacktriangleright estimating θ and $\phi,$ testing on hypotheses about θ and ϕ

What if $f(\cdot; \theta)$ and/or $g(\cdot; \phi)$ can not be confidently specified? e.g., in medical settings, to play "safe"!

 \Longrightarrow

- any statistical methods robust to the model assumption?
- any statistical methods not requiring to specify the population distribution(s), distribution-free procedures?

Have we ever studied anything like that?

4.1 Nonparametric and Robust Statistics (Chp 10)

Review 1.A Summary Statistics: order statistics Definition. Suppose X_1, \ldots, X_n are iid observations from a continuous r.v. $X \sim f(\cdot)$ with cdf $F(\cdot)$. The **order statistics** of the random sample are $X_{(1)}, X_{(2)}, \ldots, X_{(n)}$: $X_{(1)} < X_{(2)} < \ldots < X_{(n)}$. $X_{(1)}$ = the smallest value of X_1, \ldots, X_n , $X_{(2)}$ = the 2nd smallest value of X_1, \ldots, X_n , ..., $X_{(n)}$ = the largest value of X_1, \ldots, X_n . **Distribution.** $X_{(k)} \sim \frac{n!}{(k-1)!(n-k)!} F(x)^{k-1} (1-F(x))^{n-k} f(x)$ for $k = 1, \ldots, n$.

Example 10.1 Realizations of 5 iid observations X_1, \ldots, X_5 from a population are given in the table below.

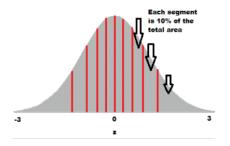
$$\frac{x_1 \quad x_2 \quad x_3 \quad x_4 \quad x_5}{0.62 \quad 0.98 \quad 0.31 \quad 0.81 \quad 0.53}$$

The order statistics?

Review 1.B Summary Statistics: rank statistics **Definition.** The rank of X_k , the *k*th observation in a random sample of size *n*, is r_k such that $X_k = X_{(r_k)}$, for k = 1, ..., n.

Example 10.1 (cont'd)							
-	` obs ´	x_1	<i>x</i> ₂	<i>x</i> ₃	x_4	X_5	
		0.62	0.98	0.31	x ₄ 0.81	0.53	
	order stat. $x_{(r_k)}$ rank stat.	<i>x</i> (3)	<i>X</i> (5)	<i>x</i> (1)	<i>x</i> (4)	<i>x</i> (2)	

Review 1.C Summary Statistics: percentiles/quantiles. Definition. Suppose r.v. $X \sim f(\cdot)$ with a random sample X_1, \ldots, X_n . (i) **Population percentitles:** π_p is the (100*p*)th percentile of the population if $P(X \leq \pi_p) = p$. That is, $\int_{-\infty}^{\pi_p} f(x) dx = p$.



(ii) **Sample percentiles:** Let $X_{(1)}, \ldots, X_{(n)}$ be the order statistics. Then $X_{(r)}$ is the (r/n)100th (or (r/n+1)100th) sample percentile.

e.g., If p = 0.5, the population median *m* is the (100p)th population percentile.

The order statistic $X_{(n+1/2)}$ is the sample median when *n* is odd; all values in between $X_{(n/2)}$ and $X_{(n/2+1)}$ are the sample median when *n* is even.

Review 2. Empirical Distribution Function:

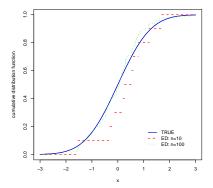
Definition. Suppose r.v. $X \sim F(\cdot)$ with a random sample X_1, \ldots, X_n . Its **empirical distribution** is defined as

$$\hat{F}_n(x) = \frac{1}{n} \# \{ X_i : X_i \le x; i = 1, \dots, n \}, \ x \in (-\infty, \infty).$$

That is, $\hat{F}_n(x) = 0$ if $x < X_{(1)}$; k/n, if $X_{(k)} \le x < X_{(k+1)}$ when $1 \le k \le n-1$; 1, if $x \ge X_{(n)}$.

•
$$E[\hat{F}_n(x)] = F(x)$$
, $Var[\hat{F}_n(x)] = F(x)[1 - F(x)]/n$ for a fixed x

Standard Normal Distribution



4.1.1 Nonparametric and Robust Statistics: Location Models

Definition. Let X be a r.v. with cdf $F_X(\cdot)$. We call the functional $T(\cdot)$ a **location functional** if it satisfies the following:

- If Y = X + a for −∞ < a < ∞, the r.v. Y's cdf F_Y(·) satisfies T(F_Y) = T(F_X) + a;
- if Y = aX for -∞ < a < ∞, the r.v. Y's cdf F_Y(·) satisfies
 T(F_Y) = aT(F_X).

Definition. The distribution of r.v. X is a location model if there is a location functional $T(\cdot)$, and $X = \theta_X + \epsilon$ with $\theta_X = T(F_X)$ and $T(F_{\epsilon}) = 0$.

A location model depends very much on the functional.

- Let ε ~ F(·) such that F(0) = 1/2. If X = θ + ε with -∞ < θ < ∞, X follows the location model with the locational functional T(F_X) = θ.
- If X is a continuous r.v. following a location model
 X = θ_X + ε with pdf f_X(·), f_X(x) = f(x − θ_X) with f(·) the pdf of ε.
- ► If the distribution of r.v. X is symmetric about a, for any location functional T(·), T(F_X) = a.

Proof:

4.1.2 Sample Median and the Sign Test

Let $\{X_1, \ldots, X_n\}$ be a random sample following the location model: $X_i = \theta + \epsilon_i$, with $\epsilon_i \sim F(\cdot)$ i.i.d. and median 0.

- ► Test on H₀: θ = θ₀ vs H₁: θ > θ₀ at the significance level of α.
 - The location functional $T(F_X) = \theta$ is the median of X_1, \ldots, X_n .

Consider the sign statistic

 $\begin{aligned} S(\theta_0) &= \#\{i : X_i > \theta_0\} = \sum_{i=1}^n sgn(X_i - \theta_0) \text{ with } \\ sgn(X_i - \theta) &= \mathsf{I}(X_i > \theta_0): \text{ under } H_0, \end{aligned}$

$$S(heta_0) \sim B(n, 1/2).$$

Reject H_0 if $S(\theta_0) \ge c$ with c the upper α quantile of B(n, 1/2), i.e. $P_{H_0}(S(\theta_0) \ge c) \le \alpha$.

Let $\{X_1, \ldots, X_n\}$ be a random sample following the location model: $X_i = \theta + \epsilon_i$, with $\epsilon_i \sim F(\cdot)$ i.i.d. and median 0.

► Test on H₀: θ = θ₀ vs H₁: θ ≠ θ₀ at the significance level of α.

Consider the **sign statistic** $S(\theta_0) = \#\{i : X_i > \theta_0\} = \sum_{i=1}^n sgn(X_i - \theta_0)$: under H_0 , $S(\theta_0) \sim B(n, 1/2)$.

Reject H_0 if either $S(\theta_0) \ge c_1$ or $S(\theta_0) \le c_2$ with c_1 and c_2 the upper and lower $\alpha/2$ quantile of B(n, 1/2), respectively, i.e. $P_{H_0}(c_2 < S(\theta_0) < c_1) = 1 - \alpha$.

Remarks:

- The sign test is distribution free.
- If n >> 1, $\left[S(\theta_0) (n/2)\right] / \sqrt{n/4} \sim N(0,1)$ approximately.

Example 10.2

- ► Study. a type of steel beam with a compressive strength ≥ 50K lb/in²?
- ▶ Data. n = 25 beams (observations). (Assume they're iid.) Among them, there were 6 beams with strength greater than $\geq 50 \text{K lb/in}^2$.
- Hypotheses. $H_0: m = 50K$ vs $H_1: m < 50K$
- by the Sign Test.

(i) [the exact approach] $S = \sum_{i=1}^{25} S_i \sim B(25, 1/2)$ under H_0 . From Table A.1, the critical value c with $\alpha = 0.01$ for $P_{H_0}(S < c) = 0.01$ is between 6 and 7. Since $S_{obs} = 6$, \implies inconclusive. (ii) [the approximate approach]

$$Z = \frac{\sum_{i=1}^{25} S_i - \frac{25}{2}}{\sqrt{25/4}}$$

approximately under H_0 . $Z_{obs} = -2.6 < -z_{0.01} = -2.33$ \implies reject H_0 .

4.1.2 Sample Median and the Sign Test

Suppose X_1, \ldots, X_n are i.i.d. with median θ . Denote the sign test statistic by $S(\theta)$.

Estimation of population median θ based on the sign statistic

Point estimator

Note that $\bar{X}_n = argmin \sqrt{\sum_{i=1}^n (X_i - \theta)^2}$. (via the Euclidean distance, i.e. the L_2 -distance)

What is $\hat{\theta} = \operatorname{argmin} \sum_{i=1}^{n} |X_i - \theta|$? (via the L₁-distance)

 $\hat{\theta}$ is the solution of

$$\frac{\partial}{\partial \theta} \sum_{i=1}^{n} |X_i - \theta| = -\sum_{i=1}^{n} sgn(X_i - \theta) = 0,$$

equivalent to $S(\theta) - n/2 = 0$.

Confidence interval

Choose c such that $P_{ heta}ig(S(heta)\leq cig)=lpha/2$, and thus

$$P_{\theta}(c < S(\theta) < n - c) = 1 - \alpha.$$

$$\implies \{\phi : c < S(\phi) < n - c\} \text{ is a } 1 - \alpha \text{ CI of } \theta.$$
If $n >> 1$, $c \approx \frac{1}{2} [n - 1 - \sqrt{n}z_{1-\alpha/2}]$, where $z_{1-\alpha/2}$ is the $1 - \alpha/2$ quantile of $N(0, 1)$.

4.1.3 Signed-Rank Test and MWW Test

Let $\{X_1, \ldots, X_n\}$ be a random sample following the location model: $X_i = \theta + \epsilon_i$, with $\epsilon_i \sim F(\cdot)$ i.i.d. and median 0. **Goal:** Test $H_0: \theta = 0$ vs $H_1: \theta > 0$ at the significance level of α .

Signed-Rank Test.

$$T = \sum_{i=1}^{n} sgn(X_i)R|X_i|$$

with $R|X_i|$ the rank of $|X_i|$ among $|X_1|, \ldots, |X_n|$. Reject H_0 if $T \ge c$ with c determined by $P_{H_0}(T \ge c) = \alpha$.

Under H_0 , (i) *T*'s distribution is symmetric and determined with E(T) = 0 and Var(T) = n(n+1)(2n+1)/6, and (ii) $T/\sqrt{Var(T)} \rightarrow N(0,1)$ in distribution as $n \rightarrow \infty$.

Example 10.2 (cont'd) by the Signed-Rank Test.

(i) [the exact approach] $T = \sum_{i=1}^{25} sgn(X_i - 50)R|X_i - 50|$ with n = 25 - in principle, the critical value can be determined using the distribution table.

(ii) [the approximate approach]

$$Z = \frac{T - \frac{25(25+1)}{4}}{\sqrt{25(26)(50+1)/24}} \sim N(0,1)$$

approximately under H_0 . $Z_{obs} = -2.78 < -z_{0.01} = -2.33$ \implies Reject H_0 .

What will we study next?

- 1. Introduction
- 2. Probability and Distribution (Chp 1-3)
- 3. Essential Topics in Mathematical Statistics (Chp 4-6)
- 4. Further Topics, Selected from Chp 7-11
 - 4.1 Nonparametric and Robust Statistics (Chp 10)
 - ▶ 4.1.1 Location Models
 - ▶ 4.1.2 Sample Median and the Sign Test
 - 4.1.3 Signed-Rank Test and Mann-Whitney-Wilcoxon Test
 - 4.1.4 Measures of Association
 - 4.1.5 Robust Concepts
 - 4.2 Bayesian Procedures (Chp 11)