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4.1 Nonparametric and Robust Statistics (Chp 10)

Why to study nonparametrics? Why to study robust statistics?

Recall most statistical methods studied so far .. ...

I Specifying r.v. X ∼ f (·; θ)

I estimating θ,
I testing on hypotheses about θ

I Specifying r.v.s. X ∼ f (·; θ), Y ∼ g(·;φ)

I estimating θ and φ, testing on hypotheses about θ and φ

What if f (·; θ) and/or g(·;φ) can not be confidently specified?
e.g., in medical settings, to play “safe”!
=⇒

I any statistical methods robust to the model assumption?

I any statistical methods not requiring to specify the population
distribution(s), distribution-free procedures?

Have we ever studied anything like that?



4.1 Nonparametric and Robust Statistics (Chp 10)

Review 1.A Summary Statistics: order statistics Definition.
Suppose X1, . . . ,Xn are iid observations from a continuous r.v. X ∼ f (·)
with cdf F (·). The order statistics of the random sample are
X(1),X(2), . . . ,X(n): X(1) < X(2) < . . . < X(n).

X(1) = the smallest value of X1, . . . ,Xn,

X(2) = the 2nd smallest value of X1, . . . ,Xn, ... ...,

X(n) = the largest value of X1, . . . ,Xn.

Distribution. X(k) ∼ n!
(k−1)!(n−k)!F (x)k−1(1− F (x))n−k f (x) for

k = 1, . . . , n.

Example 10.1 Realizations of 5 iid observations X1, . . . ,X5 from a
population are given in the table below.

x1 x2 x3 x4 x5
0.62 0.98 0.31 0.81 0.53

The order statistics?



Review 1.B Summary Statistics: rank statistics
Definition. The rank of Xk , the kth observation in a random sample of
size n, is rk such that Xk = X(rk ), for k = 1, . . . , n.

Example 10.1 (cont’d)
obs x1 x2 x3 x4 x5

0.62 0.98 0.31 0.81 0.53

order stat. x(rk ) x(3) x(5) x(1) x(4) x(2)
rank stat.

Review 1.C Summary Statistics: percentiles/quantiles.
Definition. Suppose r.v. X ∼ f (·) with a random sample X1, . . . ,Xn.

(i) Population percentitles: πp is the (100p)th percentile of the

population if P(X ≤ πp) = p. That is,
∫ πp

−∞ f (x)dx = p.



(ii) Sample percentiles: Let X(1), . . . ,X(n) be the order statistics. Then
X(r) is the (r/n)100th (or (r/n + 1)100th) sample percentile.

e.g., If p = 0.5, the population median m is the (100p)th population
percentile.

The order statistic X(n+1/2) is the sample median when n is odd; all values

in between X(n/2) and X(n/2+1) are the sample median when n is even.



Review 2. Empirical Distribution Function:
Definition. Suppose r.v. X ∼ F (·) with a random sample X1, . . . ,Xn. Its
empirical distribution is defined as

F̂n(x) =
1

n
#{Xi : Xi ≤ x ; i = 1, . . . , n}, x ∈ (−∞,∞).

That is, F̂n(x) = 0 if x < X(1); k/n, if X(k) ≤ x < X(k+1) when
1 ≤ k ≤ n − 1; 1, if x ≥ X(n).

I E [F̂n(x)] = F (x), Var [F̂n(x)] = F (x)[1− F (x)]/n for a fixed x
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4.1.1 Nonparametric and Robust Statistics:
Location Models

Definition. Let X be a r.v. with cdf FX (·). We call the functional
T (·) a location functional if it satisfies the following:

I If Y = X + a for −∞ < a <∞, the r.v. Y ’s cdf FY (·)
satisfies T (FY ) = T (FX ) + a;

I if Y = aX for −∞ < a <∞, the r.v. Y ’s cdf FY (·) satisfies
T (FY ) = aT (FX ).

Definition. The distribution of r.v. X is a location model if there
is a location functional T (·), and X = θX + ε with θX = T (FX )
and T (Fε) = 0.

A location model depends very much on the functional.



I Let ε ∼ F (·) such that F (0) = 1/2. If X = θ + ε with
−∞ < θ <∞, X follows the location model with the
locational functional T (FX ) = θ.

I If X is a continuous r.v. following a location model
X = θX + ε with pdf fX (·), fX (x) = f (x − θX ) with f (·) the
pdf of ε.

I If the distribution of r.v. X is symmetric about a, for any
location functional T (·), T (FX ) = a.

Proof:



4.1.2 Sample Median and the Sign Test

Let {X1, . . . ,Xn} be a random sample following the location
model: Xi = θ + εi , with εi ∼ F (·) i.i.d. and median 0.

I Test on H0 : θ = θ0 vs H1 : θ > θ0 at the significance level of
α.

I The location functional T (FX ) = θ is the median of
X1, . . . ,Xn.

Consider the sign statistic
S(θ0) = #{i : Xi > θ0} =

∑n
i=1 sgn(Xi − θ0) with

sgn(Xi − θ) = I(Xi > θ0): under H0,

S(θ0) ∼ B(n, 1/2).

Reject H0 if S(θ0) ≥ c with c the upper α quantile of B(n, 1/2),
i.e. PH0

(
S(θ0) ≥ c

)
≤ α.



Let {X1, . . . ,Xn} be a random sample following the location
model: Xi = θ + εi , with εi ∼ F (·) i.i.d. and median 0.

I Test on H0 : θ = θ0 vs H1 : θ 6= θ0 at the significance level of
α.

Consider the sign statistic
S(θ0) = #{i : Xi > θ0} =

∑n
i=1 sgn(Xi − θ0): under H0,

S(θ0) ∼ B(n, 1/2).

Reject H0 if either S(θ0) ≥ c1 or S(θ0) ≤ c2 with c1 and c2 the
upper and lower α/2 quantile of B(n, 1/2), respectively, i.e.
PH0

(
c2 < S(θ0) < c1

)
= 1− α.

Remarks:

I The sign test is distribution free.

I If n >> 1,
[
S(θ0)− (n/2)

]/√
n/4 ∼ N(0, 1) approximately.



Example 10.2

I Study. a type of steel beam with a compressive strength ≥
50K lb/in2?

I Data. n = 25 beams (observations). (Assume they’re iid.)
Among them, there were 6 beams with strength greater than
≥ 50K lb/in2.

I Hypotheses. H0 : m = 50K vs H1 : m < 50K
I by the Sign Test.

(i) [the exact approach]

S =
∑25

i=1 Si ∼ B(25, 1/2) under H0. From Table A.1, the
critical value c with α = 0.01 for PH0(S < c) = 0.01 is
between 6 and 7.
Since Sobs = 6, =⇒ inconclusive.
(ii) [the approximate approach]

Z =

∑25
i=1 Si −

25
2√

25/4

approximately under H0. Zobs = −2.6 < −z0.01 = −2.33
=⇒ reject H0.



4.1.2 Sample Median and the Sign Test

Suppose X1, . . . ,Xn are i.i.d. with median θ. Denote the sign test
statistic by S(θ).

Estimation of population median θ based on the sign statistic

I Point estimator

Note that X̄n = argmin
√∑n

i=1(Xi − θ)2. (via the Euclidean
distance, i.e. the L2-distance)

What is θ̂ = argmin
∑n

i=1 |Xi − θ|? (via the L1-distance)

θ̂ is the solution of

∂

∂θ

n∑
i=1

|Xi − θ| = −
n∑

i=1

sgn(Xi − θ) = 0,

equivalent to S(θ)− n/2 = 0.



I Confidence interval

Choose c such that Pθ
(
S(θ) ≤ c

)
= α/2, and thus

Pθ
(
c < S(θ) < n − c

)
= 1− α.

=⇒ {φ : c < S(φ) < n − c
}

is a 1− α CI of θ.

If n >> 1, c ≈ 1
2

[
n − 1−

√
nz1−α/2

]
, where z1−α/2 is the 1− α/2

quantile of N(0, 1).



4.1.3 Signed-Rank Test and MWW Test

Let {X1, . . . ,Xn} be a random sample following the location
model: Xi = θ + εi , with εi ∼ F (·) i.i.d. and median 0.
Goal: Test H0 : θ = 0 vs H1 : θ > 0 at the significance level of α.

I Signed-Rank Test.

T =
n∑

i=1

sgn(Xi )R|Xi |

with R|Xi | the rank of |Xi | among |X1|, . . . , |Xn|.
Reject H0 if T ≥ c with c determined by PH0(T ≥ c) = α.

Under H0, (i) T ’s distribution is symmetric and determined with
E (T ) = 0 and Var(T ) = n(n + 1)(2n + 1)/6, and (ii)
T
/√

Var(T )→ N(0, 1) in distribution as n→∞.



Example 10.2 (cont’d) by the Signed-Rank Test.

(i) [the exact approach]
T =

∑25
i=1 sgn(Xi − 50)R|Xi − 50| with n = 25 – in principle,

the critical value can be determined using the distribution
table.

(ii) [the approximate approach]

Z =
T − 25(25+1)

4√
25(26)(50 + 1)/24

∼ N(0, 1)

approximately under H0. Zobs = −2.78 < −z0.01 = −2.33
=⇒ Reject H0.
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