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» 4.1.2 Sample Median and the Sign Test

» 4.1.3 Signed-Rank Test and Mann-Whitney-Wilcoxon
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» 4.1.4 Measures of Association
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4.1 Nonparametric and Robust Statistics (Chp 10)

Why to study nonparametrics? Why to study robust statistics?

Recall most statistical methods studied so far .. ...

> Specifying r.v. X ~ f(+;0)

> estimating @,
» testing on hypotheses about 6

> Specifying rv.s. X ~ (- 6), Y ~ g(-; ¢)
> estimating 6 and ¢, testing on hypotheses about 6 and ¢
What if f(-;0) and/or g(-; ) can not be confidently specified?

e.g., in medical settings, to play “safe”!
S

> any statistical methods robust to the model assumption?

> any statistical methods not requiring to specify the population
distribution(s), distribution-free procedures?

Have we ever studied anything like that?



4.1 Nonparametric and Robust Statistics (Chp 10)

Review 1.A Summary Statistics: order statistics Definition.
Suppose Xi, ..., X, are iid observations from a continuous r.v. X ~ f(-)
with cdf F(-). The order statistics of the random sample are
X(l),X(2), C.. ,X(,,)Z X(l) < X(Q) <...< X(,,)

X(1) = the smallest value of Xi,..., X,
X(2) = the 2nd smallest value of Xi,..., X, ... ... ,
X(n) = the largest value of Xi,..., X,.

Distribution. X,y ~ W(!n*k)!F(X)k_l(l — F(x))"%f(x) for
k=1,...,n

Example 10.1 Realizations of 5 iid observations Xi,..., X5 from a
population are given in the table below.
X1 X2 X3 X4 X5

0.62 098 0.31 0.81 0.53
The order statistics?



Review 1.B Summary Statistics: rank statistics
Definition. The rank of X, the kth observation in a random sample of

size n, is re such that Xy = X,), for k =1,...,n.
Example 10.1 (cont'd)
obs X1 X2 X3 Xa X5
062 098 031 081 0.53

order stat. x(y,)
rank stat.

X(3) X(s) X(1) X4 X(2)

Review 1.C Summary Statistics: percentiles/quantiles.
Definition. Suppose r.v. X ~ f(-) with a random sample Xi,..., X,.

(i) Population percentitles: 7, is the (100p)th percentile of the
population if P(X < m,) = p. Thatis, [™_f(x)dx = p.
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(i) Sample percentiles: Let X(y),..., X, be the order statistics. Then
X(r) is the (r/n)100th (or (r/n+ 1)100th) sample percentile.

e.g., If p=0.5, the population median m is the (100p)th population
percentile.

The order statistic X(y41/2) is the sample median when n is odd; all values
in between X(,/2) and X(,,/241) are the sample median when n is even.



Review 2. Empirical Distribution Function:

Definition. Suppose r.v. X ~ F(-) with a random sample X, ...

empirical distribution is defined as

N

That is, Fa(x) = 0 if x < Xy k/n, if X(x) < x < X(k41) when

1
Fa(x) = E#{Xi Xi<x;i=1,...,n}, x € (—00,).

1<k<n-1;1, ifoX(,,).

, Xp. Its

> E[Fn(x)] = F(x), Var[Fn(x)] = F(x)[1 — F(x)]/n for a fixed x

cumulative distribution function

Standard Normal Distribution




4.1.1 Nonparametric and Robust Statistics:
Location Models

Definition. Let X be a r.v. with cdf Fx(-). We call the functional
T(-) a location functional if it satisfies the following:
» If Y =X+ afor —oco <a< oo, therv. Y's cdf Fy(:)
satisfies T(Fy) = T(Fx) + a;
» if Y =aX for —oo < a < o0, the r.v. Y's cdf Fy(-) satisfies
T(Fy) = aT(Fx)

Definition. The distribution of r.v. X is a location model if there
is a location functional T(-), and X = 6x + ¢ with Ox = T(Fx)
and T(F.)=0.

A location model depends very much on the functional.



» Let € ~ F(-) such that F(0) =1/2. If X =0 + ¢ with
—00 < 0 < 00, X follows the location model with the
locational functional T(Fx) = 0.

» If X is a continuous r.v. following a location model
X = 0x + € with pdf fx(-), fx(x) = f(x — 0x) with f(-) the
pdf of e.

» If the distribution of r.v. X is symmetric about a, for any
location functional T(:), T(Fx) = a.

Proof:



4.1.2 Sample Median and the Sign Test

Let {Xi,...,X,} be a random sample following the location
model: X; = 6 + ¢;, with ¢; ~ F(-) i.i.d. and median 0.
» Test on Hy : 6 =0 vs Hy : 6 > g at the significance level of
a.
» The location functional T(Fx) = 6 is the median of
X1y ooy Xn

Consider the sign statistic
5((90) = #{I X > 90} = 27:1 sgn(X,- — 90) with
sgn(Xi — 0) = 1(X; > 6p): under Hp,

S(6o) ~ B(n,1/2).

Reject Hp if S(Ao) > c with ¢ the upper a quantile of B(n,1/2),
i.e. PHg (5(90) > C) < a.



Let {Xi,...,X,} be a random sample following the location
model: X; = 6 + ¢;, with ¢; ~ F(+) i.i.d. and median 0.

> Test on Hy : 0 = 0 vs Hy : 0 # 0g at the significance level of
Q.

Consider the sign statistic
S(00) = #{i: Xi > 6o} = 27:1 sgn(Xi — 0o): under Hy,

S(6o) ~ B(n,1/2).

Reject Hp if either S(6p) > c1 or S(0y) < ¢ with ¢ and ¢, the
upper and lower «/2 quantile of B(n,1/2), respectively, i.e.
PHO(CQ < 5(00) < Cl) =1—-aq.

Remarks:

» The sign test is distribution free.
» If n>>1, [S(60) — (n/2)] /+/n/4 ~ N(0,1) approximately.



Example 10.2

» Study. a type of steel beam with a compressive strength >
50K Ib/in?

» Data. n =25 beams (observations). (Assume they're iid.)
Among them, there were 6 beams with strength greater than
> 50K Ib/in?.

» Hypotheses. Hy : m = 50K vs Hi : m < 50K

» by the Sign Test.

(i) [the exact approach]

S= 21221 Si ~ B(25,1/2) under Hy. From Table A.1, the
critical value ¢ with a = 0.01 for Py, (S < ¢) =0.01 is
between 6 and 7.

Since Syps = 6, = inconclusive.
(i) [the approximate approach]

25
_ 221 i_z?s
\/25/4

approximately under Hy. Zops = —2.6 < —zy.01 = —2.33
= reject Hp.



4.1.2 Sample Median and the Sign Test

Suppose Xi, ..., X, are i.i.d. with median 8. Denote the sign test
statistic by S(6).

Estimation of population median 6 based on the sign statistic

» Point estimator

Note that X, = argmin\/>_"_;(X; — 0)2. (via the Euclidean

distance, i.e. the Ly-distance)
What is 6 = argmin 3_7_, | X; — 0|? (via the L;-distance)

0 is the solution of

IS =01 = = sgn(Xi—0) =0,
i=1 i=1

equivalent to S(0) — n/2 = 0.



» Confidence interval

Choose ¢ such that Py(S(6) < ¢) = a/2, and thus
Py(c<S(O)<n—c)=1-a.
— {¢p:c<S(¢)<n—c}isal—aClofé.

fn>>1c~3[n—1- VNZi_y ], where z;_ 5 is the 1 — /2
quantile of N(0,1).



4.1.3 Signed-Rank Test and MWW Test

Let {Xi,...,X,} be a random sample following the location
model: X;j = 6 + ¢;, with ¢; ~ F(-) i.i.d. and median 0.
Goal: Test Hy: 8 =0 vs H; : 6 > 0 at the significance level of a.

» Signed-Rank Test.
T = ngn IR|Xi|

with R|Xi| the rank of | X;| among |Xi|,...,|Xxl.
Reject Hp if T > c with ¢ determined by Py (T > ¢) = a.

Under Hp, (i) T's distribution is symmetric and determined with
E(T)=0and Var(T) = n(n+1)(2n+1)/6, and (ii)
T /+/Var(T) — N(0,1) in distribution as n — co.



Example 10.2 (cont'd) by the Signed-Rank Test.

(i) [the exact approach]

T =32, sgn(X; — 50)R|X; — 50| with n = 25 — in principle,
the critical value can be determined using the distribution
table.

(i) [the approximate approach]
25(25+1
T _ 25( o )

~ /25(26)(50 + 1),24

N(0,1)

approximately under Hy. Zops = —2.78 < —2p.01 = —2.33
—> Reject Hp.



What will we study next?

1. Introduction
2. Probability and Distribution (Chp 1-3)

3. Essential Topics in Mathematical Statistics (Chp 4-6)

4. Further Topics, Selected from Chp 7-11
» 4.1 Nonparametric and Robust Statistics (Chp 10)
4.1.1 Location Models
4.1.2 Sample Median and the Sign Test
4.1.3 Signed-Rank Test and Mann-Whitney-Wilcoxon Test
4.1.4 Measures of Association
4.1.5 Robust Concepts

vVvyyvyVvyy

» 4.2 Bayesian Procedures (Chp 11)
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