What to do today (Nov 25, 2020)?

1. Introduction
2. Probability and Distribution (Chp 1-3)
3. Essential Topics in Mathematical Statistics
4. Further Topics, Selected from Chp 7-11

- 4.1 Nonparametric and Robust Statistics (Chp 10)
- 4.1.1 Location Models
- 4.1.2 Sample Median and the Sign Test
- 4.1.3 Signed-Rank and Mann-Whitney-Wilcoxon Tests
- 4.1.4 Measures of Association
- 4.1.5 Robust Concepts
- 4.2 Bayesian Procedures (Chp 11)

4.1.3 Signed-Rank Test and MWW Test

Let $\left\{X_{1}, \ldots, X_{n}\right\}$ be a random sample following the location model: $X_{i}=\theta+\epsilon_{i}$, with $\epsilon_{i} \sim F(\cdot)$ i.i.d. and median 0 .
Goal: Test $H_{0}: \theta=0$ vs $H_{1}: \theta>0$ at the significance level of α. Is the sign test efficient?

- Signed-Rank Test.

$$
T=\sum_{i=1}^{n} \operatorname{sgn}\left(X_{i}\right) R\left|X_{i}\right|
$$

with $R\left|X_{i}\right|$ the rank of $\left|X_{i}\right|$ among $\left|X_{1}\right|, \ldots,\left|X_{n}\right|$.
Reject H_{0} if $T \geq c$ with c determined by $P_{H_{0}}(T \geq c)=\alpha$.
Under H_{0}, (i) T 's distribution is symmetric and determined with $E(T)=0$ and $\operatorname{Var}(T)=n(n+1)(2 n+1) / 6$, and (ii) $T / \sqrt{\operatorname{Var}(T)} \rightarrow N(0,1)$ in distribution as $n \rightarrow \infty$.

Example 10.2 (cont'd) by the Signed-Rank Test.
(i) [the exact approach]
$T=\sum_{i=1}^{25} \operatorname{sgn}\left(X_{i}-50\right) R\left|X_{i}-50\right|$ with $n=25-$ in principle, the critical value can be determined using the distribution table.
(ii) [the approximate approach]

$$
Z=\frac{T}{\sqrt{25(26)(50+1) / 24}} \sim N(0,1)
$$

approximately under $H_{0} . Z_{\text {obs }}=-2.78<-z_{0.01}=-2.33$
\Longrightarrow Reject H_{0}.

- Mann-Whitney-Wilcoxon Test.

Suppose r.v. $X \sim F(\cdot)$ and r.v. $Y \sim G(\cdot)$. Consider two-sample problem: testing on whether X is stochastically smaller than Y at the significance level of α ?

What if to consider $Y=X+\Delta$ and then $G(y)=F(y-\Delta)$? $\Longrightarrow H_{0}: \Delta=0$ vs $H_{1}: \Delta>0$ with $\Delta=T\left(F_{Y}\right)-T\left(F_{X}\right)$.

Suppose $\left\{X_{1}, \ldots, X_{n_{X}}\right\}$ and $\left\{Y_{1}, \ldots, Y_{n_{Y}}\right\}$ are random samples from the two populations.
Consider $W=\sum_{i=1}^{n \curlyvee} R\left(Y_{i}\right)$ with $R\left(Y_{i}\right)$ the rank of Y_{i} in the combined sample $\left\{X_{1}, \ldots, X_{n_{X}}, Y_{1}, \ldots, Y_{n_{Y}}\right\}$ of size $n=n_{X}+n_{Y}$.

- Under H_{0}, W's distribution free with a symmetric pmf and $E(W)=n_{Y}(n+1) / 2$ and $\operatorname{Var}(W)=n_{X} n_{Y}(n+1) / 12$. Reject H_{0} if $W>c$ with c satisfying $P_{H_{0}}(W>c) \leq \alpha$.
- If $n \gg 1$, approximately $\frac{W-n_{Y}(n+1) / 2}{\sqrt{\operatorname{Var}(W)}} \sim N(0,1)$.
- What if $H_{1}: \Delta \neq 0$?

4.1.4 Measures of Association (Chp10.8)

Consider r.v.s. X and Y with joint distribution $F_{X Y}(x, y)$.
Goal. to understand the association between X and Y. the strength of the association?
e.g. correlation coefficient $\rho=\operatorname{Cov}(X, Y) / \sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}=$?

Estimate ρ ? Test on $H_{0}: \rho=0$?
Suppose $\left(X_{1}, Y_{1}\right),\left(X_{2}, Y_{2}\right), \ldots,\left(X_{n}, Y_{n}\right)$ are iid observations on (X, Y) : sample correlation coefficient (Pearson correlation coefficient)

$$
r=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sqrt{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}}}
$$

alternative measure of association?

4.1.4 Measures of Association: Kendall's τ

 a measure of the similarity of X and Y in trend of taking values (the monotonicity)?Definition. Let $\left(X_{1}, Y_{1}\right)$ and $\left(X_{2}, Y_{2}\right)$ be iid observations on (X, Y). These pairs are concordant or discordant if $\operatorname{sgn}\left\{\left(X_{1}-X_{2}\right)\left(Y_{1}-Y_{2}\right)\right\}=1$ or $\operatorname{sgn}\left\{\left(X_{1}-X_{2}\right)\left(Y_{1}-Y_{2}\right)\right\}=-1$, respectively.

A measure of X and Y 's increasing vs decreasing relationship: the Kendall's τ :
$\tau=P\left(\operatorname{sgn}\left\{\left(X_{1}-X_{2}\right)\left(Y_{1}-Y_{2}\right)\right\}=1\right)-P\left(\operatorname{sgn}\left\{\left(X_{1}-X_{2}\right)\left(Y_{1}-Y_{2}\right)\right\}=-1\right)$.

Proposition. If $\left(X_{1}, Y_{1}\right)$ and $\left(X_{2}, Y_{2}\right)$ be iid observations on (X, Y), which follows a continuous bivariate distribution. If X and Y are independent, $\tau=0$.

- If $\tau=0, X$ and Y are not independent in general.

Suppose $\left(X_{1}, Y_{1}\right),\left(X_{2}, Y_{2}\right), \ldots,\left(X_{n}, Y_{n}\right)$ are iid observations on (X, Y).

$$
K=\frac{1}{\binom{n}{2}} \sum_{i<j} \operatorname{sgn}\left\{\left(X_{i}-X_{j}\right)\left(Y_{i}-Y_{j}\right)\right\}
$$

is an unbiased estimator of the Kendall's τ.
Proposition. $\left(X_{1}, Y_{1}\right),\left(X_{2}, Y_{2}\right), \ldots,\left(X_{n}, Y_{n}\right)$ are iid observations on (X, Y) with continuous $\operatorname{cdf} F(x, y)$. If X and Y are independent, K is distribution free with a symmetric pmf, and

$$
E(K)=0, \quad \operatorname{Var}(K)=\frac{2}{9} \frac{2 n+5}{n(n-1)}
$$

Plus $K / \sqrt{\operatorname{Var}(K)} \sim N(0,1)$ approximately if $n \gg 1$.
Example 10.3 (p633) Table 10.8.1 of the textbook presents the winning times of the 1500 m race and the marathon at the Olympics beginning with 1896 throuh 1980. Are the two winning times indepednent? By "cor.test(m1500,marathon,method="kendall", exact=T)" in R:

$$
K_{\text {obs }}=0.695 p-\text { value }=3.319 e-06 .
$$

\Longrightarrow strong evidence against the hypothesis of the independence.

4.1.4 Measures of Association: Spearman's Rho

Suppose $\left(X_{1}, Y_{1}\right),\left(X_{2}, Y_{2}\right), \ldots,\left(X_{n}, Y_{n}\right)$ are iid observations on continuous bivariate (X, Y): sample correlation coefficient (Pearson correlation coefficient)

$$
r=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sqrt{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}}} .
$$

Definition. The statistic

$$
r_{s}=\frac{\sum_{i=1}^{n}\left(R\left(X_{i}\right)-\frac{n+1}{2}\right)\left(R\left(Y_{i}\right)-\frac{n+1}{2}\right)}{n\left(n^{2}-1\right) / 12}
$$

is called the Spearman's rho, where $R\left(X_{i}\right)$ and $R\left(Y_{i}\right)$ are the ranks of X_{i} and Y_{i} among X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{n}, respectively.

Proposition. If X and Y are independent, r_{s} is distribution free, symmetrically distributed with $E(r s)=0$ and $\operatorname{Var}(r s)=1 /(n-1)$. Plus, if $n \gg 1, r_{s} / \sqrt{\operatorname{Var}\left(r_{s}\right)} \sim N(0,1)$ approximately.

4.1.5 Robust Statistics Concepts (Chp10.9): sensitivity curve

Consider X_{1}, \ldots, X_{n} iid observations on X, which follows the location model with the location parameter $\theta: X=\theta+\epsilon$ with $\epsilon \sim f(\cdot)$. That is, $f_{X}(x)=f(x-\theta)$.
Definition. If $\hat{\theta}=\hat{\theta}\left(\mathbf{X}_{n}\right)$ is an estimator of θ with $\mathbf{X}_{n}=\left(X_{1}, \ldots, X_{n}\right)$ for $n \geq 1$, we call

$$
S_{n}(x ; \hat{\theta})=\frac{\hat{\theta}\left(\mathbf{x}_{n+1}\right)-\hat{\theta}\left(\mathbf{x}_{n}\right)}{1 /(n+1)}
$$

the sensitivity curve of $\hat{\theta}$, where $\mathbf{x}_{n+1}=\left(\mathbf{x}_{n}, x\right)$.

- The sample mean \bar{X}_{n} is an estimator of θ, the solution of $\sum_{i=1}^{n}\left(X_{i}-\theta\right)=0$. It's sensitivity curve is $S_{n}(x ; \bar{X})=x-\bar{x}_{n}$. \Longrightarrow the sample mean is quite sensitive to the size of outliers.
- The sample median $\hat{\theta}_{n}$ with odd n, for example, is $X_{([n+1] / 2)}$. It's sensitivity curve $S_{n}(x ; \hat{\theta})$ is bounded, not much sensitive to an outlier.

4.1.5 Robust Statistics Concepts (Chp10.9): influence function

Definition. A point-mass contamination of the $\operatorname{cdf} F_{X}(\cdot)$ at point x is

$$
F_{X ; x, \eta}(t)=(1-\eta) F_{X}(t)+\eta \Delta_{x}(t)
$$

with $\Delta_{x}(t)=I(x \leq t)$.
Definition. If r.v. X follows a location model with the location parameter $\theta=T\left(F_{X}\right)$, we call the following function the influence function of the estimator $\hat{\theta}_{n}=T\left(\hat{F}_{X, n}\right)$:

$$
I F(x ; \hat{\theta})=\lim _{\eta \rightarrow 0} \frac{1}{\eta}\left[T\left(F_{X ; x, \eta}\right)-T\left(F_{X}\right)\right] .
$$

Definition. An estimator $\hat{\theta}$ is robust if $|I F(x ; \hat{\theta})|$ is bounded $\forall x$.

What will we study next?

1. Introduction
2. Probability and Distribution (Chp 1-3)
3. Essential Topics in Mathematical Statistics (Chp 4-6)
4. Further Topics, Selected from Chp 7-11

- 4.1 Nonparametric and Robust Statistics (Chp 10)
- 4.2 Bayesian Procedures (Chp 11)
- 4.2.1 Prior and Posterior Distributions
- 4.2.2 Bayesian Point Estimation
- 4.2.3 Bayesian Interval Estimation
- 4.2.4 Bayesian Testing Procedures
- 4.2.5 Additional Topics in Bayesian Statistics

