What to study today (Sept 16, 2020)?

2.1 Probability (Chp1.1-4)

2.1.1 Introduction
2.1.2 Set Theory
2.1.3 Preliminaries of Probability
2.1.4 Conditional Probability and Independence

2.1.3 Preliminaries of Probability: Definition

Consider an experiment.

- Its sample space S is the set of all its possible outcome.
- Its associated events are the subsets of S from a σ-field \mathcal{F} definied on S.
- Axiom Definition of Probability: (Kolmogorov, 1933) A probability measure P satisfies three axioms (basic probability rules):

1. For any event $A \in \mathcal{F}, P(A) \geq 0$.
2. $P(S)=1$ for the sample space S.
3. If A_{1}, A_{2}, \ldots are disjoint (mutually exclusive), $P\left(\bigcup_{j=1}^{\infty} A_{j}\right)=\sum_{j=1}^{\infty} P\left(A_{j}\right)$.

A probability measure P is a measure defined on \mathcal{F} with $P(S)=1$.

2.1.3 Preliminaries of Probability: Definition

Probability Space.

A probability space is the triplet (Ω, \mathcal{F}, P) :

- a sample space Ω, the set of all possible outcomes.
- a σ-field \mathcal{F}, a set of events containing zero or more outcomes.
- a set function P (probability measure), the assignment of probabilities to the events
e.g. A fair coin is flipped twice. What is the probability of getting at least one head?
2.1.3 Preliminaries of Probability: Basic Properties Useful derivations from the Kolmogorov defn (induced probability rules):
- $P(\bar{A})=1-P(A) \Longrightarrow P(\emptyset)=0$
- If $A \subseteq B, P(A) \leq P(B)$
- Inclusion Exclusion Formula.
- $P(A \bigcup B)=P(A)+P(B)-P(A B)$
- $P(A \cup B \cup C)=$
$[P(A)+P(B)+P(C)]-[P(A B)+P(B C)+P(A C)]+P(A B C)$
- $P\left(\bigcup_{k=1}^{K} A_{k}\right)=$
$\sum_{k=1}^{K} P\left(A_{k}\right)-\sum_{k<1} P\left(A_{k} A_{l}\right)+\sum_{k<1<m} P\left(A_{k} A_{l} A_{m}\right) \ldots$

2.1.3 Preliminaries of Probability: Counting Rules

 For $0 \leq r \leq n$,- permutation. The number of permutations of r objects chosen from n distinct objects

$$
n^{(r)}=n(n-1)(n-2) \ldots(n-r+1)=\frac{n!}{(n-r)!}
$$

Special Case: $r=n$

- combination. The number of combinations of r objects chosen from n distinct objects

$$
\binom{n}{r}=\frac{n^{(r)}}{r!}=\frac{n!}{r!(n-r)!}
$$

- $\binom{n}{r}=\binom{n}{n-r}$.
- binomial coefficients. $\binom{n}{k}$:

$$
(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k}
$$

2.1.3 Preliminaries of Probability: Further Properties.

Let $\left\{C_{n}\right\}_{n=1}^{\infty}$ be a sequence of events from (Ω, \mathcal{F}, P).

- If $C_{n} \subseteq C_{n+1}$ (\{$\left.C_{n}\right\}$ is nondecreasing), denote $\lim _{n \rightarrow \infty} C_{n}=\bigcup_{n=1}^{\infty} C_{n}$, and then

$$
\lim _{n \rightarrow \infty} P\left(C_{n}\right)=P\left(\lim _{n \rightarrow \infty} C_{n}\right)=P\left(\bigcup_{n=1}^{\infty} C_{n}\right)
$$

- If $C_{n} \supseteq C_{n+1}$ ($\left\{C_{n}\right\}$ is nonincreasing), denote $\lim _{n \rightarrow \infty} C_{n}=\bigcap_{n=1}^{\infty} C_{n}$, and then

$$
\lim _{n \rightarrow \infty} P\left(C_{n}\right)=P\left(\lim _{n \rightarrow \infty} C_{n}\right)=P\left(\bigcap_{n=1}^{\infty} C_{n}\right)
$$

- Boole's Inequality. $P\left(\bigcup_{n=1}^{\infty} C_{n}\right) \leq \sum_{n=1}^{\infty} P\left(C_{n}\right)$

2.1.4 Conditional Probability and Independence: Conditional probability

When only those outcomes that are elements of a subset of the sample space S are of interest ...
Conditional Probability: (Very important concept!)
The conditional probability of A given B is

$$
P(A \mid B)=\frac{P(A B)}{P(B)}
$$

provided that $P(B) \neq 0$.
Comments:

- What if $P(B)=0$? What if $A=B$?
- Often use $P(A B)=P(A \mid B) P(B)=P(B \mid A) P(A)$.
- $P(A \mid B) \neq P(B \mid A)$.

Example 2.4. The birthday problem. Among 30 people, what is the probability that at least two of them share a common birthday?
$P(B)=P(\geq 2$ people share a birthday $)=1-P($ all 30 birthdays are diff $)$
$A_{K}=\mathrm{K}$ people all with different birthdays.

2.1.4 Conditional Probability and Independence: Conditional probability

Consider K mutually exclusive and exhaustive events C_{1}, \ldots, C_{K} : C_{k} 's are disjoint and $\bigcup_{j=1}^{K} C_{j}=S$.

Bayes' Theorem. (law of total probability)

$$
P\left(C_{j} \mid A\right)=\frac{P\left(C_{j} A\right)}{P(A)}=\frac{P\left(A \mid C_{j}\right) P\left(C_{j}\right)}{\sum_{i=1}^{K} P\left(C_{i}\right) P\left(A \mid C_{i}\right)}
$$

2.1.4 Conditional Probability and Independence: Independence

The simplest relationship of two events ... Independence: (Very important concept!) Events A and B are independent if and only if (iff)

$$
P(A B)=P(A) P(B)
$$

Two events are independent if the occurrence or nonoccurrence of one event does not affect the probability of the other event: If $A \Perp B, P(A \mid B)=P(A)$.

Definition. Events $A_{1}, A_{2}, \ldots, A_{K}$ are mutually independent iff the probability of th eintersection of any $2,3, \ldots, K$ of these events equals the product of their respective probabilities.

2.1.4 Conditional Probability and Independence: Independence

Example of pairwise independence but not mutual independence: Roll two dice and define the following

- $A_{1}=$ first die is odd.
- $A_{2}=$ second die is odd.
- $A_{3}=$ sum of both dice is odd.

What will we study in the next class?

I. Introduction
2. Probability and Distributions
2.1 Probability (Chp1.1-4)
2.2 Random Variables and Distributions (Chp1.5-10)
2.3 Multivariate Distributions (Chp2)
2.4 Some Important Distributions (Chp3)
3. Essential Topics in Mathematical Statistics (Chp 4-6)
4. Further Topics, Selected from Chp 7-11

