What to study today (Sept 21, 2020)?

2.1 Probability (Chp1.1-4)

- 2.1.1 Introduction
- 2.1.2 Set Theory
- 2.1.3 Preliminaries of Probability
- 2.1.4 Conditional Probability and Independence
2.2 Random Variable and Distribution (Chp1.5-10)
- 2.2.1 Basic Concepts
- 2.2.2 Discrete Random Variable
- 2.2.3 Continuous Random Variable
- 2.2.4 Expectation and Related

Probability Definition and Related

Consider an experiment with its sample space S and its associated events, subsets of S from a σ-field \mathcal{F} definied on S.

Axiom Definition of Probability: (Kolmogorov, 1933)
A probability measure P satisfies three axioms (basic probability rules):

1. For any event $A \in \mathcal{F}, P(A) \geq 0$.
2. $P(S)=1$ for the sample space S.
3. If A_{1}, A_{2}, \ldots are disjoint (mutually exclusive),
$P\left(\bigcup_{j=1}^{\infty} A_{j}\right)=\sum_{j=1}^{\infty} P\left(A_{j}\right)$.
Useful derivations from the Kolmogorov defn:

- $P(\bar{A})=1-P(A) \Longrightarrow P(\emptyset)=0$
- If $A \subseteq B, P(A) \leq P(B)$
- Inclusion Exclusion Formula.
- $P(A \bigcup B)=P(A)+P(B)-P(A B)$
- $P\left(\bigcup_{k=1}^{K} A_{k}\right)=\sum_{k=1}^{K}(-1)^{k}\left[\sum_{i_{1}<\ldots<i_{k}} P\left(A_{i_{1}} \ldots A_{i_{k}}\right)\right]$

2.1.4 Conditional Probability and Independence

 Conditional Probability: (Very important concept!)The conditional probability of A given B is

$$
P(A \mid B)=\frac{P(A B)}{P(B)}
$$

provided that $P(B) \neq 0$.
The simplest relationship of two events ...
Independence: (Very important concept!) Events A and B are independent if and only if (iff)

$$
P(A B)=P(A) P(B)
$$

Consider K mutually exclusive and exhaustive events C_{1}, \ldots, C_{K} : C_{k} 's are disjoint and $\bigcup_{j=1}^{K} C_{j}=\mathcal{S}$.

Bayes' Theorem. (law of total probability)

$$
P\left(C_{j} \mid A\right)=\frac{P\left(C_{j} A\right)}{P(A)}=\frac{P\left(A \mid C_{j}\right) P\left(C_{j}\right)}{\sum_{i=1}^{K} P\left(C_{i}\right) P\left(A \mid C_{i}\right)}
$$

2.2 Random Variable and Distribution (Chp1.5-10): 2.2.1 Basic Concepts

Consider an experiment with its sample space S and the collection of its associated events \mathcal{F}.

Definition of Random Variable:
A random variable (rv) X is a real-valued function defined on S and with $\{c \in S: X(c) \in(a, b)\}$ being an event for any real interval $(a, b) \subseteq \mathcal{R}$.

For example

- A coin is flipped 10 times: let X be the number of heads.
- A student waits for a bus to school: let Y be the waiting time.
- The sum of two dice.
- The S\&P/TSX closing price tomorrow.

2.2.1 Basic Concepts: Cumulative Distribution Function (cdf)

Consider a rv $X: S \longrightarrow \mathcal{R}$.
Definition. The function

$$
F(x)=P(\{c \in S: X(c) \leq x\}), \quad \forall x \in \mathcal{R}
$$

is called X 's cumulative distribution function (cdf).
Often the presentation is shorten as $F(x)=P(X \leq x)$.

Remarks

- While a rv X is a measurable function defined on S, its distribution is associated with a particular probability space (S, \mathcal{F}, P).

2.2.1 Basic Concepts: Cumulative Distribution Function (cdf)

Basic Properties. If $F(x)$ is the cdf of a rv X,

- $F(x)$ is nondecreasing.
- $F(x)$ is right-continuous. $\left(F\left(x_{0}+\right)=\lim _{x \downarrow x_{0}} F(x)=F\left(x_{0}\right)\right)$
- $\lim _{x \rightarrow-\infty} F(x)=0$ and $\lim _{x \rightarrow \infty} F(x)=1$.

Examples of Application. If $F(x)$ is the cdf of X, then

- $P(a<X \leq b)=F(b)-F(a)$.
- A special case: $P(X=x)=F(x)-F(x-)$.
- If $Y=\alpha+\beta X$ with $\beta>0, P(Y \leq y)=F((y-\alpha) / \beta)$.
- If $Z=\log (X), P(Z \leq z)=F(\exp (z))$.

2.2.2 Discrete Random Variable: Definition

Definition. A rv X is discrete, if the set of all its possible values is countable (finite or countably infinite).

Definition. The probability mass function (pmf) of a discrete rv X is $p(x)=P(X=x)$ for $x=x_{1}, x_{2}, \ldots$.

Basic Properties. If $p(x)$ is the pmf of $\mathrm{rv} X$,

- $p(x) \geq 0$ for $x=x_{1}, x_{2}, \ldots$.
- $\sum_{\text {all } x} p(x)=1$.

For example

- Let X be the number of heads when flipping a fair coin K

$$
\text { times: } p(x)=\binom{K}{x} / 2^{K} \text { for } x=0,1, \ldots, K .
$$

- Toss a coin repeatedly till a head occurs. Let X be the number of trials: $p(x)=1 / 2^{x}$ for $x=1,2, \ldots$

2.2.2 Discrete Random Variable: Connection between pmf and cdf

Let $F(x), p(x)$ be the $c d f, \mathrm{pmf}$ of a discrete $\mathrm{rv} X$ with all possible values x_{1}, x_{2}, \ldots.

- $F(x)$ is a step function with jumps at most at x_{1}, x_{2}, \ldots.

$$
F(x)=\sum_{\text {all } u \leq x} p(u) .
$$

- $p(x)$ is the jump size of the cdf: $p(x)=F(x)-F(x-)$.

For example, X is the number of heads when flipping a coin twice. What is its pmf? What is its cdf?

2.2.3 Continuous Random Variable: Definition

Definition. A rv X is continuous, if its $\operatorname{cdf} F(x)$ is continuous for $x \in \mathcal{R}$.

Definition. The probability density function (pdf) of a continuous rv X with $\operatorname{cdf} F(x)$ is $f(x)=d F(x) / d x$ for $x \in \mathcal{R}$ if $d F(x) / d x$ exists.

Basic Properties. If $f(x)$ is the pdf of $r v X$,

- $f(x) \geq 0$ for $x \in \mathcal{R}$.
- $\int_{-\infty}^{\infty} f(x) d x=1$.

Further

- $F(x)=\int_{-\infty}^{x} f(u) d u$.
- $P(a<X \leq b)=\int_{a}^{b} f(x) d x$.

2.2.3 Continuous Random Variable: Examples

- Let X be the waiting time (in minute) for a bus:

$$
f(x)= \begin{cases}1 / 10 & x \in(0,10) \\ 0 & \text { otherwise }\end{cases}
$$

- What is the probability with X between 3 to 8 min ?
- What is the cdf of X ?
- Let the pdf of rv X be

$$
f(x)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{2}\right),-\infty<x<\infty
$$

- What is $P(X>0)$?
- What is $\int_{-\infty}^{\infty} x f(x) d x$?

2.2.3 Continuous Random Variable: Examples

Example 2.6 Assume r.v. $W \sim U(0,1)$, the continuous uniform distribution over $[0,1]$.

- Define a r.v. $X=a W+b$. What are the pdf and cdf of X if $a>0$?
- Define another discrete r.v. $Y= \begin{cases}0, & 0 \leq W<1 / 2 \\ 1, & 1 / 2 \leq W \leq 1\end{cases}$ What are the pmf and cdf of Y ?

What will we study in the next class?

1. Introduction
2. Probability and Distributions (Chp 1-3)

- 2.1 Probability (Chp1.1-4)
- 2.2 Random Variable and Distribution (Chp1.5-10)
- 2.2.1 Basic Concepts
- 2.2.2 Discrete Random Variable
- 2.2.3 Continuous Random Variable
- 2.2.4 Expectation and Related
2.3 Multivariate Distributions (Chp2)
2.4 Some Important Distributions (Chp3)

3. Essential Topics in Mathematical Statistics (Chp 4-6)
4. Further Topics, Selected from Chp 7-11
