What to study today (Sept 23, 2020)?

2. Probability and Distributions (Chp 1-3) 2.1 Probability (Chp1.1-4)

2.2 Random Variable and Distribution (Chp1.5-10)

- 2.2.1 Basic Concepts
- 2.2.2 Discrete Random Variable
- 2.2.3 Continuous Random Variable
- 2.2.4 Expectation and Related
- 2.3 Multivariate Distributions (Chp2)
- 2.4 Some Important Distributions (Chp3)

2.2.4 Expectation and Related: Definition

Definition. The **expectation** of rv X with cdf F(x) is $E(X) = \int_{-\infty}^{\infty} x dF(x)$, provided the integral exists.

- If X is continuous with pdf f(x), dF(x) = f(x)dx and $E(X) = \int_{-\infty}^{\infty} xf(x)dx$.
- If X is discrete with pmf p(x), dF(x) = F(x) F(x-) = p(x)and $E(X) = \sum_{all \ x} xp(x)$.

Comment. E(X) is an average of X's all possible values (the **population mean**): the sum of X's all possible values weighted by how likely X taking the values.

2.2.4 Expectation and Related: Examples for Expectation

What is E(X) if X is the waiting time (in minute) for a bus with the following pdf?

$$f(x) = \left\{ egin{array}{cc} 1/10 & x \in (0,10) \\ 0 & ext{otherwise.} \end{array}
ight.$$

What is E(X) if X is the number of heads from flipping a fair coin twice?

2.2.4 Expectation and Related: More Definitions

More generally ...

Definition. The expectation of rv Y = g(X) with X's cdf F(x) is $E(Y) = \int_{-\infty}^{\infty} g(x) dF(x)$, provided the integral exists.

- If X is continuous with pdf f(x), dF(x) = f(x)dx and $E(Y) = \int_{-\infty}^{\infty} g(x)f(x)dx$.
- ▶ If X is discrete with pmf p(x), dF(x) = F(x) F(x-) = p(x)and $E(Y) = \sum_{all x} g(x)p(x)$.

Definition. The variance of rv X with cdf F(x) and $\mu = E(X)$ is $Var(X) = E[(X - \mu)^2]$, provided the expectation exists.

Often people use $Var(X) = E(X^2) - \mu^2$ to calculate the variance.

2.2.4 Expectation and Related: Examples for Variance

What is Var(X) if X is the waiting time (in minute) for a bus with the following pdf?

$$f(x) = \begin{cases} 1/10 & x \in (0, 10) \\ 0 & \text{otherwise.} \end{cases}$$

What is Var(X) if X is the number of heads from flipping a fair coin twice?

2.2.4 Expectation and Related: Moment Generating Function

Definition. The moment generating function (mgf) of v X is $M(t) = E(e^{tX})$ for $t \in (-h, h)$, provided the expectation exists.

•
$$M(0) = 1; M'(0) = \frac{dM(t)}{dt}\Big|_{t=0} = E(X);$$

 $M''(0) = \frac{d^2M(t)}{dt^2}\Big|_{t=0} = E(X^2).$

Two rvs X and Y have the same mgf iff their cdf's are the same.

Remarks. A related function: the **characteristic function** of rv X is $\phi(t) = E(e^{itX})$ with *i* the imaginary unit.

•
$$\phi(t)$$
 always exists for $t \in \mathcal{R}$.

$$\bullet \ \phi(-it) = M(t).$$

2.2.4 Expectation and Related: Further Properties

• The expectation operator E is linear: for constants k_1, k_2 ,

$$E\big[k_1g_1(X)+k_2g_2(X)\big]=k_1E\big[g_1(X)\big]+k_2E\big[g_2(X)\big]$$

provided the expectations exist.

For example, if the pdf of rv X is $f(x) = \frac{1}{\sqrt{2\pi}} \exp(-\frac{x^2}{2})$ for $-\infty < x < \infty$, what is $E(3X - 2X^2)$? [-2]

2.2.4 Expectation and Related: Further Properties

- Markov's Inequality If h(x) is a nonnegative function, for a > 0, P[h(X) ≥ a] ≤ E[h(X)]/a.
 A special case: Chebyshev's Inequality. for constant k, P[|X − μ| ≥ kσ] ≤ 1/k² with μ = E(X) and σ² = Var(X).
- Jensen's Inequality If φ(·) is convex downward (or concave) on rv X's support, φ[E(X)] ≤ E[φ(X)].

• A special case: $[E(X)]^2 \leq E(X^2)$.

What will we study in the next class?

- 1. Introduction
- 2. Probability and Distributions (Chp 1-3)
 - 2.1 Probability (Chp1.1-4)
 - 2.2 Random Variable and Distribution (Chp1.5-10)
 - 2.3 Multivariate Distributions (Chp2)
 - 2.3.1 Basic Concepts on Two Random Variables
 - 2.3.2 Conditional Distribution and Expectation
 - 2.3.3 Extension to Several Random Variables
 - 2.4 Some Important Distributions (Chp3)
- 3. Essential Topics in Mathematical Statistics (Chp 4-6)
- 4. Further Topics, Selected from Chp 7-11