What to study today (Sept 28, 2020)?

 2. Probability and Distribution (Chp 1-3)2.1 Probability (Chp1.1-4)
2.2 Random Variable and Distribution (Chp1.5-10)

- 2.2.1 Basic Concepts
- 2.2.2 Discrete Random Variable
- 2.2.3 Continuous Random Variable
- 2.2.4 Expectation and Related
2.3 Multivariate Distribution (Chp2)
- 2.3.1 Basic Concepts with Two Random Variables
- 2.3.2 Conditional Distribution and Expectation
- 2.3.3 Extension to Several Random Variable
2.4 Some Special Distributions (Chp3)

Example 2.6 Assume r.v. $W \sim U(0,1)$, the continuous uniform distribution over $[0,1]$.
(1) Define a r.v. $X=a W+b$. What are the pdf and $c d f$ of X ?
(2) Define another discrete r.v. $Y=\left\{\begin{array}{ll}0, & 0 \leq W<1 / 3 \\ 1, & 1 / 3 \leq W \leq 1\end{array}\right.$. What are the pmf and cdf of Y ?

Review: Expectation

Definition. The expectation of $r v X$ with $\operatorname{cdf} F(x)$ is $E(X)=\int_{-\infty}^{\infty} x d F(x)$, provided the integral exists.

- If X is continuous with pdf $f(x), d F(x)=f(x) d x$ and $E(X)=\int_{-\infty}^{\infty} x f(x) d x$.
- If X is discrete with pmf $p(x), d F(x)=F(x)-F(x-)=p(x)$ and $E(X)=\sum_{\text {all } x} x p(x)$.

Definition. The expectation of $g(X)$ with $X \sim F(x)$ is $E[g(X)]=\int_{-\infty}^{\infty} g(x) d F(x)$, provided the integral exists.

- The variance of rv X with cdf $F(x)$ and $\mu=E(X)$ is $\operatorname{Var}(X)=E\left[(X-\mu)^{2}\right]$, provided the expectation exists.
- The moment generating function (mgf) of rv X with X 's cdf $F(x)$ is $M(t)=E\left(e^{t X}\right)$ for $t \in(-h, h)$, provided the expectation exists.
- $M(0)=1 ; M^{\prime}(0)=\left.\frac{d M(t)}{d t}\right|_{t=0}=E(X) ; M^{\prime \prime}(0)=E\left(X^{2}\right) ;$
$M^{k}(0)=\left.\frac{d^{k} M(t)}{d t^{k}}\right|_{t=0}=E\left(X^{k}\right)$ with any integer k.
- Two rvs X and Y have the same mgf iff their cdf are the same.

2.2.4 Expectation and Related: Further Properties

- The expectation operator E is linear: for constants k_{1}, k_{2},

$$
E\left[k_{1} g_{1}(X)+k_{2} g_{2}(X)\right]=k_{1} E\left[g_{1}(X)\right]+k_{2} E\left[g_{2}(X)\right]
$$

provided the expectations exist.
For example, if the pdf of $r v X$ is $f(x)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{2}\right)$ for $-\infty<x<\infty$, what is $E\left(3 X^{2}-2 X-1\right)$? [2]

- $\operatorname{Var}\left(k_{1} X+k_{2}\right)=k_{1}^{2} \operatorname{Var}(X)$.

For example, if the pdf of $r v X$ is $f(x)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{2}\right)$ for $-\infty<x<\infty$, what is $\operatorname{Var}(3 X-2)$? [9]

Example 2.7 Assume r.v. $W \sim U(0,1)$, the continuous uniform distribution over $[0,1]$.
(1) Define a r.v. $X=a W+b$. What are $E(X)$ and $\operatorname{Var}(X)$? What is the mgf of X ?
(2) Define another discrete r.v. $Y=\left\{\begin{array}{ll}0, & 0 \leq W<1 / 3 \\ 1, & 1 / 3 \leq W \leq 1\end{array}\right.$.

What are $E(Y)$ and $\operatorname{Var}(Y)$? What is the mgf of Y ?

2.2.4 Expectation and Related: Further Properties

- Markov's Inequality. If $h(x)$ is a nonnegative function, for $a>0, P[h(X) \geq a] \leq \frac{E[h(X)]}{a}$.
- A special case: Chebyshev's Inequality. for constant k, $P[|X-\mu| \geq k \sigma] \leq \frac{1}{k^{2}}$ with $\mu=E(X)$ and $\sigma^{2}=\operatorname{Var}(X)$.
- Jensen's Inequality. If $\phi(\cdot)$ is convex (convex downward or concave upward) on rv X's support, $\phi[E(X)] \leq E[\phi(X)]$.
- A special case: $[E(X)]^{2} \leq E\left(X^{2}\right)$.

2.3 Multivariate Distribution (Chp2): Basic Concepts

Consider two rvs X_{1}, X_{2} : study them one at a time via the tools discussed in Chp 1?
Definition. The joint cdf of the random vector $\left(X_{1}, X_{2}\right)$ is

$$
F\left(x_{1}, x_{2}\right)=P\left(X_{1} \leq x_{1}, X_{2} \leq x_{2}\right)
$$

for $-\infty<x_{1}, x_{2}<\infty$. If the sample space is S,
$F\left(x_{1}, x_{2}\right)=P\left(\left\{c: X_{1}(c) \leq x_{1}\right\} \bigcap\left\{c: X_{2}(c) \leq x_{2}\right\}\right)$.
Basic Properties of $F\left(x_{1}, x_{2}\right)$:

- $0 \leq F\left(x_{1}, x_{2}\right) \leq 1$ for all $-\infty<x_{1}, x_{2}<\infty$.
- nondecreasing and right-continuous wrt either of x_{1}, x_{2}.
- $\lim _{x_{1} \rightarrow \infty, x_{2} \rightarrow \infty} F\left(x_{1}, x_{2}\right)=1$.
- $\lim _{x_{1} \rightarrow-\infty} F\left(x_{1}, x_{2}\right)=\lim _{x_{2} \rightarrow-\infty} F\left(x_{1}, x_{2}\right)=0$
- $\lim _{x_{1} \rightarrow \infty} F\left(x_{1}, x_{2}\right)=P\left(X_{2} \leq x_{2}\right)=F_{X_{2}}\left(x_{2}\right)$, the marginal cdf of $X_{2} ; \lim _{x_{2} \rightarrow \infty} F\left(x_{1}, x_{2}\right)=P\left(X_{1} \leq x_{1}\right)=F_{X_{1}}\left(x_{1}\right)$, the marginal cdf of X_{1}

2.3.1 Basic Concepts with Two Random Variables

- When X_{1}, X_{2} are discrete, the joint pmf of $\left(X_{1}, X_{2}\right)$ is $p\left(x_{1}, x_{2}\right)=P\left(X_{1}=x_{1}, X_{2}=x_{2}\right)$.

Example 2.8 Consider to roll a die after flipping an even coin: use a six-face die with face numbers $1,1,2,2,3,3$ if getting a head; otherwise, use a die with numbers $1,1,1,2,2,2$. Let X_{1} be the number of head and X_{2} be the number from the die.

- What is the joint pmf of $\left(X_{1}, X_{2}\right)$?
- What is the pmf of X_{1}, of X_{2} ?
- In general, the (marginal) pmf of X_{1} is $p_{X_{1}}\left(x_{1}\right)=\sum_{\text {all } x_{2}} p\left(x_{1}, x_{2}\right)$; the pmf of X_{2} is $p_{X_{2}}\left(x_{2}\right)=\sum_{\text {all } x_{1}} p\left(x_{1}, x_{2}\right)$
- Can we obtain the joint pmf $p\left(x_{1}, x_{2}\right)$ from the marginal pmf $p_{X_{1}}(\cdot)$ and the marginal pmf $p_{X_{2}}(\cdot)$?
- When X_{1}, X_{2} are continuous, the joint pdf of $\left(X_{1}, X_{2}\right)$ is $f\left(x_{1}, x_{2}\right)$ such that $P\left(\left(X_{1}, X_{2}\right) \in A\right)=\iint_{A} f\left(x_{1}, x_{2}\right) d x_{1} d x_{2}$.
Example 2.9 Consider two continuous rvs X_{1}, X_{2} with joint pdf:

$$
f\left(x_{1}, x_{2}\right)=\left\{\begin{array}{lr}
x_{1}+x_{2}, & 0<x_{1}, x_{2}<1 \\
0, & \text { otherwise }
\end{array}\right.
$$

- What is $P\left(X_{1} \geq X_{2}\right)=$? [1/2] What is $P\left(X_{1}+X_{2} \leq 1\right)=$? [1/3]
- What is the (marginal) pdf of X_{1}, of X_{2} ?
- Can we obtain the joint pdf $f\left(x_{1}, x_{2}\right)$ from the marginal pdf $f_{X_{1}}(\cdot)$ and the marginal pdf $f_{X_{2}}(\cdot)$?

2.3.1 Basic Concepts with Two Random Variables

Definition. Two rvs X_{1}, X_{2} are independent iff their joint cdf is the product of their marginal cdfs: $F\left(x_{1}, x_{2}\right)=F_{X_{1}}\left(x_{1}\right) F_{X_{2}}\left(x_{2}\right)$ for $-\infty<x_{1}, x_{2}<\infty$, that is
$P\left(X_{1} \leq x_{1}, X_{2} \leq x_{2}\right)=P\left(X_{1} \leq x_{1}\right) P\left(X_{2} \leq x_{2}\right)$ for
$-\infty<x_{1}, x_{2}<\infty$,

- Two discrete rvs X_{1}, X_{2} are independent iff their joint pmf is the product of their marginal pmfs: $p\left(x_{1}, x_{2}\right)=p_{X_{1}}\left(x_{1}\right) p_{X_{2}}\left(x_{2}\right)$.
- Two continuous rvs X_{1}, X_{2} are independent iff their joint pdf is the product of their marginal pdfs: $f\left(x_{1}, x_{2}\right)=f_{X_{1}}\left(x_{1}\right) f_{X_{2}}\left(x_{2}\right)$.

2.3.1 Basic Concepts with Two Random Variables

Definition. The expectation of $Y=g\left(X_{1}, X_{2}\right)$, a function of two rvs X, X_{2}, is $E(Y)=\iint g\left(x_{1}, x_{2}\right) d F\left(x_{1}, x_{2}\right)$.

- If X_{1}, X_{2} are both discrete with joint pmf $p\left(x_{1}, x_{2}\right)$,

$$
E(Y)=\sum_{\text {all } x_{1}, x_{2}} g\left(x_{1}, x_{2}\right) p\left(x_{1}, x_{2}\right) .
$$

- If X_{1}, X_{2} are both continuous with joint pdf $f\left(x_{1}, x_{2}\right)$,

$$
E(Y)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g\left(x_{1}, x_{2}\right) f\left(x_{1}, x_{2}\right) d x_{1} d x_{2}
$$

Definition. The covariance of two rvs X_{1}, X_{2} is
$\operatorname{Cov}\left(X_{1}, X_{2}\right)=E\left[\left(X_{1}-\mu_{1}\right)\left(X_{2}-\mu_{2}\right)\right]=E\left(X_{1} X_{2}\right)-\mu_{1} \mu_{2}$, where $\mu_{1}=E\left(X_{1}\right)$ and $\mu_{2}=E\left(X_{2}\right)$.

- $\operatorname{Cov}\left(X_{1}, X_{1}\right)=\operatorname{Var}\left(X_{1}\right)$
- The correlation coefficient of X_{1}, X_{2} is

$$
\rho\left(X_{1}, X_{2}\right)=\operatorname{Cov}\left(X_{1}, X_{2}\right) / \sqrt{\operatorname{Var}\left(X_{1}\right) \operatorname{Var}\left(X_{2}\right)}:-1 \leq \rho \leq 1
$$

2.3.1 Basic Concepts with Two Random Variables

- If X_{1}, X_{2} are indpt $\left(X_{1} \Perp X_{2}\right), E\left(X_{1} X_{2}\right)=E\left(X_{1}\right) E\left(X_{2}\right)$, and thus $\operatorname{Cov}\left(X_{1}, X_{2}\right)=0$ and $\rho\left(X_{1}, X_{2}\right)=0$.
- Example 2.8 (cont'd) What are $\operatorname{Cov}\left(X_{1}, X_{2}\right), \rho\left(X_{1}, X_{2}\right)$?
- Example 2.9 (cont'd) What are $\operatorname{Cov}\left(X_{1}, X_{2}\right), \rho\left(X_{1}, X_{2}\right)$?

What will we study in the next class?

1. Introduction
2. Probability and Distribution (Chp 1-3)

- 2.1 Probability (Chp1.1-4)
- 2.2 Random Variable and Distribution (Chp1.5-10)
- 2.3 Multivariate Distribution (Chp2)
- 2.3.1 Basic Concepts with Two Random Variables
- 2.3.2 Conditional Distribution and Expectation
- 2.3.3 Extension to Several Random Variables
- 2.4 Some Important Distributions (Chp3)

3. Essential Topics in Mathematical Statistics (Chp 4-6)
4. Further Topics, Selected from Chp 7-11
