What to study today (Sept 28, 2020)? 2. Probability and Distribution (Chp 1-3)

2.1 Probability (Chp1.1-4)

2.2 Random Variable and Distribution (Chp1.5-10)

- 2.2.1 Basic Concepts
- 2.2.2 Discrete Random Variable
- 2.2.3 Continuous Random Variable
- 2.2.4 Expectation and Related
- 2.3 Multivariate Distribution (Chp2)
 - ▶ 2.3.1 Basic Concepts with Two Random Variables
 - 2.3.2 Conditional Distribution and Expectation
 - 2.3.3 Extension to Several Random Variable

2.4 Some Special Distributions (Chp3)

Example 2.6 Assume r.v. $W \sim U(0,1)$, the continuous uniform distribution over [0,1].

(1) Define a r.v. X = aW + b. What are the pdf and cdf of X?

(2) Define another discrete r.v. $Y = \begin{cases} 0, & 0 \le W < 1/3 \\ 1, & 1/3 \le W \le 1 \end{cases}$. What are the pmf and cdf of Y?

Review: Expectation

Definition. The expectation of rv X with cdf F(x) is $E(X) = \int_{-\infty}^{\infty} x dF(x)$, provided the integral exists.

- If X is continuous with pdf f(x), dF(x) = f(x)dx and $E(X) = \int_{-\infty}^{\infty} xf(x)dx$.
- If X is discrete with pmf p(x), dF(x) = F(x) F(x-) = p(x) and $E(X) = \sum_{all \ x} xp(x)$.

Definition. The expectation of g(X) with $X \sim F(x)$ is $E[g(X)] = \int_{-\infty}^{\infty} g(x) dF(x)$, provided the integral exists.

- The variance of rv X with cdf F(x) and µ = E(X) is Var(X) = E[(X − µ)²], provided the expectation exists.
- ▶ The moment generating function (mgf) of rv X with X's cdf F(x) is $M(t) = E(e^{tX})$ for $t \in (-h, h)$, provided the expectation exists.

•
$$M(0) = 1; M'(0) = \frac{dM(t)}{dt}\Big|_{t=0} = E(X); M''(0) = E(X^2);$$

 $M^k(0) = \frac{d^k M(t)}{dt^k}\Big|_{t=0} = E(X^k)$ with any integer k.

Two rvs X and Y have the same mgf iff their cdf are the same.

2.2.4 Expectation and Related: Further Properties

• The expectation operator E is linear: for constants k_1, k_2 ,

$$E[k_1g_1(X) + k_2g_2(X)] = k_1E[g_1(X)] + k_2E[g_2(X)]$$

provided the expectations exist.

For example, if the pdf of rv X is $f(x) = \frac{1}{\sqrt{2\pi}} \exp(-\frac{x^2}{2})$ for $-\infty < x < \infty$, what is $E(3X^2 - 2X - 1)$? [2]

•
$$Var(k_1X + k_2) = k_1^2 Var(X)$$
.

For example, if the pdf of rv X is $f(x) = \frac{1}{\sqrt{2\pi}} \exp(-\frac{x^2}{2})$ for $-\infty < x < \infty$, what is Var(3X - 2)? [9]

Example 2.7 Assume r.v. $W \sim U(0,1)$, the continuous uniform distribution over [0,1].

(1) Define a r.v. X = aW + b. What are E(X) and Var(X)? What is the mgf of X?

(2) Define another discrete r.v. $Y = \begin{cases} 0, & 0 \le W < 1/3 \\ 1, & 1/3 \le W \le 1 \end{cases}$. What are E(Y) and Var(Y)? What is the mgf of Y? 2.2.4 Expectation and Related: Further Properties

- ▶ Markov's Inequality. If h(x) is a nonnegative function, for a > 0, $P[h(X) \ge a] \le \frac{E[h(X)]}{a}$.
 - A special case: **Chebyshev's Inequality.** for constant k, $P[|X \mu| \ge k\sigma] \le \frac{1}{k^2}$ with $\mu = E(X)$ and $\sigma^2 = Var(X)$.
- Jensen's Inequality. If φ(·) is convex (convex downward or concave upward) on rv X's support, φ[E(X)] ≤ E[φ(X)].

• A special case:
$$[E(X)]^2 \leq E(X^2)$$
.

2.3 Multivariate Distribution (Chp2): Basic Concepts

Consider two rvs X_1, X_2 : study them one at a time via the tools discussed in Chp 1?

Definition. The **joint cdf** of the random vector (X_1, X_2) is

$$F(x_1, x_2) = P(X_1 \le x_1, X_2 \le x_2)$$

for $-\infty < x_1, x_2 < \infty$. If the sample space is *S*, $F(x_1, x_2) = P(\{c : X_1(c) \le x_1\} \cap \{c : X_2(c) \le x_2\}).$ **Basic Properties** of $F(x_1, x_2)$:

- $0 \leq F(x_1, x_2) \leq 1$ for all $-\infty < x_1, x_2 < \infty$.
- nondecreasing and right-continuous wrt either of x_1, x_2 .

- $\lim_{x_1 \to -\infty} F(x_1, x_2) = \lim_{x_2 \to -\infty} F(x_1, x_2) = 0$
- ▶ $\lim_{x_1\to\infty} F(x_1, x_2) = P(X_2 \le x_2) = F_{X_2}(x_2)$, the marginal cdf of X_2 ; $\lim_{x_2\to\infty} F(x_1, x_2) = P(X_1 \le x_1) = F_{X_1}(x_1)$, the marginal cdf of X_1

• When X_1, X_2 are discrete, the **joint pmf** of (X_1, X_2) is $p(x_1, x_2) = P(X_1 = x_1, X_2 = x_2)$.

Example 2.8 Consider to roll a die after flipping an even coin: use a six-face die with face numbers 1,1,2,2,3,3 if getting a head; otherwise, use a die with numbers 1,1,1,2,2,2. Let X_1 be the number of head and X_2 be the number from the die.

- What is the joint pmf of (X_1, X_2) ?
- ▶ What is the pmf of *X*₁, of *X*₂?
- ▶ In general, the (marginal) pmf of X_1 is $p_{X_1}(x_1) = \sum_{all \ x_2} p(x_1, x_2)$; the pmf of X_2 is $p_{X_2}(x_2) = \sum_{all \ x_1} p(x_1, x_2)$
- ► Can we obtain the joint pmf p(x₁, x₂) from the marginal pmf p_{X1}(·) and the marginal pmf p_{X2}(·)?

• When X_1, X_2 are continuous, the **joint pdf** of (X_1, X_2) is $f(x_1, x_2)$ such that $P((X_1, X_2) \in A) = \int \int_A f(x_1, x_2) dx_1 dx_2$.

Example 2.9 Consider two continuous rvs X_1, X_2 with joint pdf:

$$f(x_1, x_2) = \begin{cases} x_1 + x_2, & 0 < x_1, x_2 < 1 \\ 0, & otherwise \end{cases}$$

- What is $P(X_1 \ge X_2) =? [1/2]$ What is $P(X_1 + X_2 \le 1) =? [1/3]$
- ▶ What is the (marginal) pdf of X₁, of X₂?
- ► Can we obtain the joint pdf f(x₁, x₂) from the marginal pdf f_{X1}(·) and the marginal pdf f_{X2}(·)?

Definition. Two rvs X_1, X_2 are **independent** iff their joint cdf is the product of their marginal cdfs: $F(x_1, x_2) = F_{X_1}(x_1)F_{X_2}(x_2)$ for $-\infty < x_1, x_2 < \infty$, that is $P(X_1 \le x_1, X_2 \le x_2) = P(X_1 \le x_1)P(X_2 \le x_2)$ for $-\infty < x_1, x_2 < \infty$,

- ► Two discrete rvs X₁, X₂ are **independent** iff their joint pmf is the product of their marginal pmfs:
 p(x₁, x₂) = p_{X1}(x₁)p_{X2}(x₂).
- ► Two continuous rvs X₁, X₂ are **independent** iff their joint pdf is the product of their marginal pdfs:
 f(x₁, x₂) = f_{X1}(x₁)f_{X2}(x₂).

Definition. The expectation of $Y = g(X_1, X_2)$, a function of two rvs X_1X_2 , is $E(Y) = \int \int g(x_1, x_2) dF(x_1, x_2)$.

- If X_1, X_2 are both discrete with joint pmf $p(x_1, x_2)$, $E(Y) = \sum_{all \ x_1, x_2} g(x_1, x_2) p(x_1, x_2).$
- If X_1, X_2 are both continuous with joint pdf $f(x_1, x_2)$, $E(Y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x_1, x_2) f(x_1, x_2) dx_1 dx_2.$

Definition. The **covariance** of two rvs X_1, X_2 is $Cov(X_1, X_2) = E[(X_1 - \mu_1)(X_2 - \mu_2)] = E(X_1X_2) - \mu_1\mu_2$, where $\mu_1 = E(X_1)$ and $\mu_2 = E(X_2)$.

$$\mathsf{Cov}(X_1,X_1) = \mathsf{Var}(X_1)$$

► The correlation coefficient of X_1, X_2 is $\rho(X_1, X_2) = Cov(X_1, X_2) / \sqrt{Var(X_1)Var(X_2)}$: $-1 \le \rho \le 1$.

- If X_1, X_2 are indpt $(X_1 \perp X_2)$, $E(X_1X_2) = E(X_1)E(X_2)$, and thus $Cov(X_1, X_2) = 0$ and $\rho(X_1, X_2) = 0$.
- **Example 2.8** (cont'd) What are $Cov(X_1, X_2)$, $\rho(X_1, X_2)$?

• **Example 2.9** (cont'd) What are $Cov(X_1, X_2)$, $\rho(X_1, X_2)$?

What will we study in the next class?

- 1. Introduction
- 2. Probability and Distribution (Chp 1-3)
 - 2.1 Probability (Chp1.1-4)
 - 2.2 Random Variable and Distribution (Chp1.5-10)
 - 2.3 Multivariate Distribution (Chp2)
 - 2.3.1 Basic Concepts with Two Random Variables
 - 2.3.2 Conditional Distribution and Expectation
 - 2.3.3 Extension to Several Random Variables
 - 2.4 Some Important Distributions (Chp3)
- 3. Essential Topics in Mathematical Statistics (Chp 4-6)
- 4. Further Topics, Selected from Chp 7-11