What to study today (Sept 30, 2020)?

2. Probability and Distribution (Chp 1-3)
2.1 Probability (Chp1.1-4)
2.2 Random Variable and Distribution (Chp1.5-10)
2.3 Multivariate Distribution (Chp2)

- 2.3.1 Basic Concepts with Two Random Variables
- 2.3.2 Conditional Distribution and Expectation
- 2.3.3 Extension to Several Random Variables
2.4 Some Special Distributions (Chp3)

2.3.2 Conditional Distribution and Expectation

Definition. Consider rv (X_{1}, X_{2}).

- If X_{1}, X_{2} are discrete with the joint pmf $p\left(x_{1}, x_{2}\right)$, and marginal pmfs $p_{X_{1}}\left(x_{1}\right)$ and $p_{X_{2}}\left(X_{2}\right)$, the conditional pmf of X_{2} given $X_{1}=x_{1}$ is

$$
p_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right)=P\left(X_{2}=x_{2} \mid X_{1}=x_{1}\right)=\frac{P\left(X_{1}=x_{1}, X_{2}=x_{2}\right)}{P\left(X_{1}=x_{1}\right)}
$$

provided $p_{X_{1}}\left(x_{1}\right)>0$, and the conditional pmf of X_{1} given $x_{2}=x_{2}$ is

$$
p_{X_{1} \mid X_{2}}\left(x_{1} \mid x_{2}\right)=\frac{p\left(x_{1}, x_{2}\right)}{p_{X_{2}}\left(x_{2}\right)}, \text { provided } p_{X_{2}}\left(x_{2}\right)>0
$$

- If X_{1}, X_{2} are continuous with the joint pdf $f\left(x_{1}, x_{2}\right)$, and marginal pdfs $f_{X_{1}}\left(x_{1}\right)$ and $f_{X_{2}}\left(x_{2}\right)$, the conditional pdf of X_{2} given $X_{1}=x_{1}$ is

$$
f_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right)=\frac{f\left(x_{1}, x_{2}\right)}{f_{X_{1}}\left(x_{1}\right)}
$$

provided $f_{X_{1}}\left(x_{1}\right)>0$, and the conditional pdf of X_{1} given $X_{2}=x_{2}$ is

Example 2.8. (cont'd) Consider to roll a die after flipping an even coin: use a six-face die with face colors $\mathrm{R}, \mathrm{R}, \mathrm{B}, \mathrm{B}, \mathrm{Y}, \mathrm{Y}$ if getting a head; otherwise, use a die with face colors R, R, R, B, B, B. Let X_{1} be the number of head and X_{2} be 1,2,3 for colors R,B,Y from the die.

- Are X_{1} and X_{2} independent?
- What is the connection of $p_{X_{1}}\left(x_{1}\right)$ and $p_{X_{2}}\left(x_{2}\right)$ to $p\left(x_{1}, x_{2}\right)$?
- What i the conditional pmf $p_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right)=p\left(x_{1}, x_{2}\right) / p_{X_{1}}\left(x_{1}\right)$ with $x_{1}=1,0$?
- What is conditional pmf $p_{X_{1} \mid X_{2}}\left(x_{1} \mid x_{2}\right)=p\left(x_{1}, x_{2}\right) / p_{X_{2}}\left(x_{2}\right)$ with $x_{2}=1,2,3$?

Example 2.9. (Cont'd) Consider two continuous rvs X_{1}, X_{2} with joint pdf:

$$
f\left(x_{1}, x_{2}\right)=\left\{\begin{array}{lr}
x_{1}+x_{2}, & 0<x_{1}, x_{2}<1 \\
0, & \text { otherwise }
\end{array}\right.
$$

- The connection between the joint pdf $f\left(x_{1}, x_{2}\right)$ and the marginal pdfs $f_{X_{1}}(\cdot)$ and $f_{X_{2}}(\cdot)$?
- Are X_{1} and X_{2} indpt?
- What are the conditional pdfs?

2.3.2 Conditional Distribution and Expectation

Consider two rvs X and Y.
Definition. The conditional expectation of Y given $X=x$ is

$$
E(Y \mid X=x)=\int y d F_{Y \mid X}(y \mid x)
$$

- $d F_{Y \mid X}(y \mid x)=f_{Y \mid X}(y \mid x) d y$ with $f_{Y \mid X}(y \mid x) d x$ the conditional pdf of Y given $X=x$ when Y is continuous;
- $d F_{Y \mid X}(y \mid x)=p_{Y \mid X}(y \mid x)$ with $p_{Y \mid X}(y \mid x)$ the conditional pmf of Y given $X=x$ when Y is discrete.
Properties. $E(Y \mid X)$ is a function of X and satisfies
- $E[E(Y \mid X)]=E(Y)$,
- $\operatorname{Var}[E(Y \mid X)] \leq \operatorname{Var}(Y)$.

Remark. $\operatorname{Var}(Y)=\operatorname{Var}[E(Y \mid X)]+E[\operatorname{Var}(Y \mid X)]$.

Example 2.8. (cont'd) Consider to roll a die after flipping an even coin: use a six-face die with face colors R, R, B, B, Y, Y if getting a head; otherwise, use a die with face colors $\mathrm{R}, \mathrm{R}, \mathrm{R}, \mathrm{B}, \mathrm{B}, \mathrm{B}$. Let X_{1} be the number of head and X_{2} be 1,2,3 for colors R,B,Y from the die. What are the conditional pmfs? What is $E\left(X_{2} \mid X_{1}\right)$? [2, 3/2 for $x_{1}=1,0$ while $\left.E\left(X_{2}\right)=7 / 4\right]$ What is $\operatorname{Var}\left[E\left(X_{2} \mid X_{1}\right)\right]$? [$1 / 16$ while $\left.\operatorname{Var}\left(X_{2}\right)=25 / 48\right]$

Example 2.9. (Cont'd) Consider two continuous rvs X_{1}, X_{2} with joint pdf:

$$
f\left(x_{1}, x_{2}\right)=\left\{\begin{array}{lr}
x_{1}+x_{2}, & 0<x_{1}, x_{2}<1 \\
0, & \text { otherwise }
\end{array}\right.
$$

What are the conditional pdfs? What are $E\left(X_{2} \mid X_{1}\right)$ and $\operatorname{Var}\left[E\left(X_{2} \mid X_{1}\right)\right]$?

2.3.3 Extension to Several Random Variables:
 General Issues

Consider K rvs $X_{1}, X_{2}, \ldots, X_{K}$:
Definition. The joint cdf of the random vector $\left(X_{1}, X_{2}, \ldots, X_{K}\right)$
is $F\left(x_{1}, x_{2}, \ldots, x_{k}\right)=P\left(X_{1} \leq x_{1}, X_{2} \leq x_{2}, \ldots, X_{K} \leq x_{k}\right)$ for $-\infty<x_{1}, x_{2}, \ldots, x_{K}<\infty$.

- In general $X_{1} \sim F_{X_{1}}\left(x_{1}\right)=F\left(x_{1}, \infty, \ldots, \infty\right)$, $X_{2} \sim F_{X_{2}}\left(x_{2}\right)=F\left(\infty, x_{2}, \ldots, \infty\right)$, etc.
- When X_{1}, \ldots, X_{K} are discrete, the joint pmf of $\left(X_{1}, \ldots, X_{K}\right)$ is $p\left(x_{1}, \ldots, x_{K}\right)=P\left(X_{1}=x_{1}, \ldots, X_{K}=x_{K}\right)$; when X_{1}, \ldots, X_{K} are continuous, the joint pdf of $\left(X_{1}, \ldots, X_{K}\right)$ is $f\left(x_{1}, \ldots, x_{K}\right)$ such that $P\left(\left(X_{1}, \ldots, X_{K}\right) \in A\right)=\int \ldots \int_{A} f\left(x_{1}, \ldots, x_{K}\right) d x_{1} \ldots d x_{K}$ for $A \in \mathcal{R}^{K}$.
- K rvs X_{1}, \ldots, X_{K} are independent iff $F\left(x_{1}, \ldots, x_{K}\right)=F_{X_{1}}\left(x_{1}\right) \ldots F_{X_{K}}\left(x_{K}\right)$ for $-\infty<x_{1}, \ldots, x_{K}<\infty$.
- The expectation of $Y=g\left(X_{1}, \ldots, X_{K}\right)$ is $E(Y)=\int g\left(x_{1}, \ldots, x_{K}\right) d F\left(x_{1}, \ldots, x_{K}\right)$.

2.3.3 Extension to Several Random Variables: Linear Combination

Consider linear combinations of rvs X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{m} :
$T=\sum_{i=1}^{n} a_{i} X_{i}$ and $W=\sum_{j=1}^{m} b_{j} Y_{j}$.

- $E(T)=\sum_{i=1}^{n} a_{i} E\left(X_{i}\right) ; E(Y)=\sum_{j=1}^{m} a_{j} E\left(Y_{j}\right)$
- $V(T)=\sum_{i=1}^{n} a_{i}^{2} V\left(X_{i}\right)+2 \sum_{i<j} a_{i} a_{j} \operatorname{Cov}\left(X_{i}, X_{j}\right)$
- $\operatorname{Cov}(T, W)=\sum_{i=1}^{n} \sum_{j=1}^{m} a_{i} b_{j} \operatorname{Cov}\left(X_{i}, Y_{j}\right)$.

In the special case with rvs X_{1}, \ldots, X_{n} indept and identically distributed (iid) and $E\left(X_{i}\right)=\mu, \operatorname{Var}\left(X_{i}\right)=\sigma^{2}$,

- $E(T)=\left[\sum_{i=1}^{n} a_{i}\right] \mu$,
- $V(T)=\left[\sum_{i=1}^{n} a_{i}^{2}\right] \sigma^{2}$,
- If X_{1}, \ldots, X_{n} are indpt of $Y_{1}, \ldots, Y_{m}, \operatorname{Cov}(T, W)=0$.

What will we study in the next class?

1. Introduction
2. Probability and Distribution (Chp 1-3)

- 2.1 Probability (Chp1.1-4)
- 2.2 Random Variable and Distribution (Chp1.5-10)
- 2.3 Multivariate Distribution (Chp2)
- 2.4 Some Important Distributions (Chp3)

3. Essential Topics in Mathematical Statistics (Chp 4-6)
4. Further Topics, Selected from Chp 7-11
