What to study today (Sept 30, 2020)?

2. Probability and Distribution (Chp 1-3)

2.1 Probability (Chp1.1-4)

2.2 Random Variable and Distribution (Chp1.5-10)

- 2.3 Multivariate Distribution (Chp2)
 - ▶ 2.3.1 Basic Concepts with Two Random Variables
 - 2.3.2 Conditional Distribution and Expectation
 - 2.3.3 Extension to Several Random Variables

2.4 Some Special Distributions (Chp3)

2.3.2 Conditional Distribution and Expectation Definition. Consider rv (X_1, X_2) .

If X₁, X₂ are discrete with the joint pmf p(x₁, x₂), and marginal pmfs p_{X1}(x₁) and p_{X2}(x₂), the conditional pmf of X₂ given X₁ = x₁ is

$$p_{X_2|X_1}(x_2|x_1) = P(X_2 = x_2|X_1 = x_1) = \frac{P(X_1 = x_1, X_2 = x_2)}{P(X_1 = x_1)}$$

provided $p_{X_1}(x_1) > 0$, and the **conditional pmf** of X_1 given $X_2 = x_2$ is

If X₁, X₂ are continuous with the joint pdf f(x₁, x₂), and marginal pdfs f_{X1}(x₁) and f_{X2}(x₂), the conditional pdf of X₂ given X₁ = x₁ is

$$f_{X_2|X_1}(x_2|x_1) = \frac{f(x_1, x_2)}{f_{X_1}(x_1)},$$

provided $f_{X_1}(x_1) > 0$, and the **conditional pdf** of X_1 given $X_2 = x_2$ is

Example 2.8. (cont'd) Consider to roll a die after flipping an even coin: use a six-face die with face colors R,R,B,B,Y,Y if getting a head; otherwise, use a die with face colors R,R,R,B,B,B. Let X_1 be the number of head and X_2 be 1,2,3 for colors R,B,Y from the die.

- ▶ Are X₁ and X₂ independent?
- What is the connection of $p_{X_1}(x_1)$ and $p_{X_2}(x_2)$ to $p(x_1, x_2)$?
- ▶ What i the conditional pmf $p_{X_2|X_1}(x_2|x_1) = p(x_1, x_2)/p_{X_1}(x_1)$ with $x_1 = 1, 0$?
- What is conditional pmf $p_{X_1|X_2}(x_1|x_2) = p(x_1, x_2)/p_{X_2}(x_2)$ with $x_2 = 1, 2, 3$?

Example 2.9. (Cont'd) Consider two continuous rvs X_1, X_2 with joint pdf:

$$f(x_1, x_2) = \left\{ egin{array}{cc} x_1 + x_2, & 0 < x_1, x_2 < 1 \ 0, & otherwise \end{array}
ight.$$

- ► The connection between the joint pdf f(x₁, x₂) and the marginal pdfs f_{X1}(·) and f_{X2}(·)?
- Are X₁ and X₂ indpt?
- What are the conditional pdfs?

2.3.2 Conditional Distribution and Expectation

Consider two rvs X and Y.

Definition. The conditional expectation of Y given X = x is

$$E(Y|X=x) = \int y dF_{Y|X}(y|x),$$

- ► dF_{Y|X}(y|x) = f_{Y|X}(y|x)dy with f_{Y|X}(y|x)dx the conditional pdf of Y given X = x when Y is continuous;
- → dF_{Y|X}(y|x) = p_{Y|X}(y|x) with p_{Y|X}(y|x) the conditional pmf of Y given X = x when Y is discrete.

Properties. E(Y|X) is a function of X and satisfies

•
$$E[E(Y|X)] = E(Y),$$

•
$$Var[E(Y|X)] \leq Var(Y)$$
.

Remark. Var(Y) = Var[E(Y|X)] + E[Var(Y|X)].

Example 2.8. (cont'd) Consider to roll a die after flipping an even coin: use a six-face die with face colors R,R,B,B,Y,Y if getting a head; otherwise, use a die with face colors R,R,R,B,B,B. Let X_1 be the number of head and X_2 be 1,2,3 for colors R,B,Y from the die. What are the conditional pmfs? What is $E(X_2|X_1)$? [2, 3/2 for $x_1=1,0$ while $E(X_2)=7/4$] What is $Var[E(X_2|X_1)]$? [1/16 while $Var(X_2)=25/48$]

Example 2.9. (Cont'd) Consider two continuous rvs X_1, X_2 with joint pdf:

$$f(x_1, x_2) = \begin{cases} x_1 + x_2, & 0 < x_1, x_2 < 1 \\ 0, & otherwise \end{cases}$$

What are the conditional pdfs? What are $E(X_2|X_1)$ and $Var[E(X_2|X_1)]$?

2.3.3 Extension to Several Random Variables: General Issues

Consider K rvs X_1, X_2, \ldots, X_K : **Definition.** The **joint cdf** of the random vector (X_1, X_2, \ldots, X_K) is $F(x_1, x_2, \ldots, x_k) = P(X_1 \le x_1, X_2 \le x_2, \ldots, X_K \le x_k)$ for $-\infty < x_1, x_2, \ldots, x_K < \infty$.

- ▶ In general $X_1 \sim F_{X_1}(x_1) = F(x_1, \infty, ..., \infty)$, $X_2 \sim F_{X_2}(x_2) = F(\infty, x_2, ..., \infty)$, etc.
- ▶ When $X_1, ..., X_K$ are discrete, the **joint pmf** of $(X_1, ..., X_K)$ is $p(x_1, ..., x_K) = P(X_1 = x_1, ..., X_K = x_K)$; when $X_1, ..., X_K$ are continuous, the **joint pdf** of $(X_1, ..., X_K)$ is $f(x_1, ..., x_K)$ such that $P((X_1, ..., X_K) \in A) = \int ... \int_A f(x_1, ..., x_K) dx_1 ... dx_K$ for $A \in \mathcal{R}^K$.
- ► K rvs X_1, \ldots, X_K are **independent** iff $F(x_1, \ldots, x_K) = F_{X_1}(x_1) \ldots F_{X_K}(x_K)$ for $-\infty < x_1, \ldots, x_K < \infty$.
- The expectation of $Y = g(X_1, \ldots, X_K)$ is $E(Y) = \int g(x_1, \ldots, x_K) dF(x_1, \ldots, x_K).$

2.3.3 Extension to Several Random Variables: Linear Combination

Consider linear combinations of rvs
$$X_1, ..., X_n$$
 and $Y_1, ..., Y_m$:
 $T = \sum_{i=1}^n a_i X_i$ and $W = \sum_{j=1}^m b_j Y_j$.
 $\blacktriangleright E(T) = \sum_{i=1}^n a_i E(X_i); E(Y) = \sum_{j=1}^m a_j E(Y_j)$
 $\blacktriangleright V(T) = \sum_{i=1}^n a_i^2 V(X_i) + 2 \sum_{i < j} a_i a_j Cov(X_i, X_j)$
 $\blacktriangleright Cov(T, W) = \sum_{i=1}^n \sum_{j=1}^m a_i b_j Cov(X_i, Y_j).$

In the special case with rvs X_1, \ldots, X_n indept and identically distributed (iid) and $E(X_i) = \mu$, $Var(X_i) = \sigma^2$,

•
$$E(T) = \left[\sum_{i=1}^{n} a_i\right] \mu$$
,
• $V(T) = \left[\sum_{i=1}^{n} a_i^2\right] \sigma^2$,
• If X_1, \dots, X_n are indpt of Y_1, \dots, Y_m , $Cov(T, W) = 0$.

What will we study in the next class?

1. Introduction

- 2. Probability and Distribution (Chp 1-3)
 - 2.1 Probability (Chp1.1-4)
 - 2.2 Random Variable and Distribution (Chp1.5-10)
 - 2.3 Multivariate Distribution (Chp2)
 - 2.4 Some Important Distributions (Chp3)
- 3. Essential Topics in Mathematical Statistics (Chp 4-6)
- 4. Further Topics, Selected from Chp 7-11