What to study today (Oct 5, 2020)?

- 2. Probability and Distribution (Chp 1-3)
- 2.1 Probability (Chp1.1-4)
- 2.2 Random Variable and Distribution (Chp1.5-10)
- 2.3 Multivariate Distribution (Chp2)
 - 2.3.1 Basic Concepts with Two Random Variables
 - 2.3.2 Conditional Distribution and Expectation
 - ▶ 2.3.3 Extension to Several Random Variables
- 2.4 Some Important Distributions (Chp3)
 - 2.4.1 Discrete Distributions
 - ▶ 2.4.2 Continuous Distributions
 - 2.4.3 Multivariate Distributions
 - 2.4.4 Distributions Induced from Others

2.3.3 Extension to Several Random Variables:

General Issues

Consider K (> 2) rvs $X_1, X_2, ..., X_K$: (We have to miss a lot if studing them one at a time or two at a time.)

Definition. The **joint cdf** of the random vector $(X_1, X_2, ..., X_K)$ is $F(x_1, x_2, ..., x_k) = P(X_1 \le x_1, X_2 \le x_2, ..., X_K \le x_k)$ for $-\infty < x_1, x_2, ..., x_K < \infty$.

- ▶ In general $X_1 \sim F_{X_1}(x_1) = F(x_1, \infty, ..., \infty)$, $X_1, X_2 \sim F_{X_1, X_2}(x_1, x_2) = F(x_1, x_2, ..., \infty)$, etc.
- When X_1, \ldots, X_K are discrete, the **joint pmf** of (X_1, \ldots, X_K) is $p(x_1, \ldots, x_K) = P(X_1 = x_1, \ldots, X_K = x_K)$; when X_1, \ldots, X_K are continuous, the **joint pdf** of (X_1, \ldots, X_K) is $f(x_1, \ldots, x_K)$ such that $P((X_1, \ldots, X_K) \in A) = \int \ldots \int_A f(x_1, \ldots, x_K) dx_1 \ldots dx_K$ for $A \in \mathcal{R}^K$.
- ► K rvs $X_1, ..., X_K$ are **independent** iff $F(x_1, ..., x_K) = F_{X_1}(x_1) ... F_{X_K}(x_K)$ for $-\infty < x_1, ..., x_K < \infty$.
 - If $Y = g(X_1, \dots, X_K)$, $E(Y) = \int \dots \int_{\mathcal{D}_K} g(x_1, \dots, x_K) dF(x_1, \dots, x_K).$

2.3.3 Extension to Several Random Variables: Linear Combination

Consider linear combinations of rvs X_1, \ldots, X_n and Y_1, \ldots, Y_m : $T = \sum_{i=1}^n a_i X_i$ and $W = \sum_{i=1}^m b_i Y_i$.

- \triangleright $E(T) = \sum_{i=1}^{n} a_i E(X_i); E(W) = \sum_{i=1}^{m} b_i E(Y_i)$
- $V(T) = \sum_{i=1}^{n} a_i^2 V(X_i) + 2 \sum_{i < j} a_i a_j Cov(X_i, X_j)$
- $\quad \mathsf{Cov}(T,W) = \textstyle \sum_{i=1}^n \sum_{j=1}^m \mathsf{a}_i \mathsf{b}_j \mathsf{Cov}(X_i,Y_j).$

In the special case with rvs X_1, \ldots, X_n indept and identically distributed (iid) and $E(X_i) = \mu$, $Var(X_i) = \sigma^2$,

- $\blacktriangleright E(T) = \left[\sum_{i=1}^{n} a_i\right] \mu,$
- $V(T) = \left[\sum_{i=1}^{n} a_i^2\right] \sigma^2$
- ▶ Moreover, the mgf of T is $M(u) = \prod_{i=1}^n M_X(a_i u)$.
- ▶ If $X_1, ..., X_n$ are indpt of $Y_1, ..., Y_m$, Cov(T, W) = 0.

2.4 Some Important Distributions (Chp3)

2.4.1 Discrete Distributions: Discrete Uniform Distribution

Definition. r.v. X has a **discrete uniform** distribution on a_1, \ldots, a_m , if

$$p(x)=1/m, \quad x=a_1,\ldots,a_m.$$

Physical Setting: X takes each of its possible values equally likely.

- ► $E(X) = (a_1 + ... + a_m)/m = \sum_{i=1}^m a_i/m;$ $Var(X) = \sum_{i=1}^m (a_i - E(X))^2/m.$
- Example. X is the outcome attained by rolling a fair six-sided die: p(x) = 1/6, x = 1, ..., 6.

Definition. A random experiment is called a **Bernoulli experiment** if it has two possible outcomes, say, success vs failure.

- ▶ Define rv as X(success) = 1 and X(failure) = 0. Then X is a **Bernoulli random variable**.
- ► The distribution of X is called the **Bernoulli distribution**. Its pmf is $p(x) = \theta^x (1 \theta)^{1-x}$, for x = 0, 1 if $P(X = 1) = \theta$.
 - \blacktriangleright $E(X) = \theta$; $Var(X) = \theta(1 \theta)$.
 - ▶ The mgf of *X* is $M(t) = 1 \theta + e^t \theta$.

Definition. When a Bernoulli experiment is repeated n times *independently*, a sequence of n **Bernoulli trials** occurs.

Definition. The distribution of a rv X is called a **binomial** distribution if its pmf is $p(x) = P(X = x) = \binom{n}{x} \theta^x (1 - \theta)^{n-x}$ for x = 0, 1, ..., n, denoted by $X \sim B(n, \theta)$.

Physical Setting: Consider n Bernoulli trials, where the probability of success in every trial is θ . The the distribution of rv X= the number of successes is $B(n, \theta)$.

- $E(X) = n\theta$; $Var(X) = n\theta(1 \theta)$
- Example. Flipping an even coin three times independently. X=number of heads. $X \sim B(3,1/2)$.
- ▶ The Bernoulli distribution is $B(1, \theta)$.
- ▶ If $X \sim B(n, \theta)$, then $X = Y_1 + Y_2 + \cdots + Y_n$ with Y_1, \ldots, Y_n indpt and $P(Y_1 = 1) = \cdots = P(Y_n = 1) = \theta$.

Physical Setting: Consider a sequence of Bernoulli trials with probability θ of success. Let X denote the trial number on which the first success occurs.

Definition. The distribution of $\operatorname{rv} X$ is a **geometric** distribution with pmf

$$p(x) = P(X = x) = \theta(1 - \theta)^{x-1}, \quad x = 1, 2, ...$$

with $0 \le \theta \le 1$.

- $\blacktriangleright E(X) = \frac{1}{\theta}; \ Var(X) = \frac{1-\theta}{\theta^2}.$
- ▶ Example. Toss an even coin until a head. The number of attempts follows the geometric distribution with $\theta = 1/2$.

Physical Setting: Consider a sequence of Bernoulli trials with probability of success θ . Let X denote the trial number on which the rth success occurs.

Definition. The distribution of X is a **negative binomial** distribution with its pmf

$$p(x) = P(X = x) = {x-1 \choose r-1} \theta^r (1-\theta)^{x-r}, \quad x = r, r+1, ...$$

with $r \ge 0$ and $0 \le \theta \le 1$. Denote $X \sim NB(r, \theta)$.

- $\blacktriangleright E(X) = \frac{r}{\theta}; Var(X) = \frac{r(1-\theta)}{\theta^2}.$
- Example. Toss an even coin until the 3rd head. The number of attempts follows $NB(r,\theta)$ with $\theta=1/2$ and r=3.

2.4.1 Discrete Distributions: Hypergeometric Distribution.

Definition. r.v. X has a hypergeometric distn if

$$p(x) = P(X = x) = \frac{\binom{N_1}{x} \binom{N_2}{n-x}}{\binom{N}{n}}$$

for $\max(0, n - N_2) \le x \le \min(n, N_1)$ with $N = N_1 + N_2$.

Physical Setting: Randomly select n items without replacement from a group of $N=N_1+N_2$ items, where N_1 items are in Category 1 and N_2 in Category 2. Let X be the number of selected items in Category 1.

2.4.1 Discrete Distributions: Poisson Distribution.

Definition. A r.v. X has a **Poisson** distribution, denoted by $X \sim Poisson(\lambda)$, if its pmf is

$$P(X = x) = p(x) = \frac{\lambda^{x} e^{-\lambda}}{x!}, \quad x = 0, 1, 2, ...$$

The distn is named after S.D. Poisson (1781-1840).

Comments.

- ▶ The Poisson distn is especially good at modelling rare events.
- $P(X = 0) = e^{-\lambda}$; $E(X) = Var(X) = \lambda$.
- ▶ $X \sim Poisson(\lambda)$ vs $X \sim Bin(n, \theta)$: difference and connection?
- ▶ Consider $X_1 \sim Poisson(\lambda_1)$ and $X_2 \sim Poisson(\lambda_2)$. If $X_1 \perp X_2$, $Y = X_1 + X_2 \sim Poisson(\lambda)$ with $\lambda = \lambda_1 + \lambda_2$.

2.4.2 Continuous Distributions: Uniform Distribution.

Definition. A rv X has a Uniform(a,b) distribution if its pdf is

$$f(x) = \begin{cases} \frac{1}{b-a} & a \le x \le b \\ 0 & otherwise \end{cases}$$

- E(X) = (a+b)/2; $Var(X) = (b-a)^2/12$.
- ▶ Special case: $X \sim U(0,1)$.

2.4.2 Continuous Distributions: Normal Distribution

The most important distribution in all of Statistics is the normal (Gaussian) distribution.

Definition. A r.v. X has a *normal* distribution if its pdf

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right\}, \quad -\infty < x < \infty,$$

where $\sigma > 0$. Denote it by $X \sim N(\mu, \sigma^2)$.

- ▶ If $X \sim N(\mu, \sigma^2)$, $E(X) = \mu$ and $V(X) = \sigma^2$.
- ▶ If $X \sim N(\mu, \sigma^2)$, f(x) > 0 for all x and the cdf $F(x) = \int_{-\infty}^{x} f(u) du$ has no closed form.
- $N(\mu, \sigma^2)$: a family of distributions.
 - e.g. N(0,1), the standard normal distribution. F(x) of N(0,1) is often denoted by $\Phi(x)$ and the rv by Z.

Proposition. If $X \sim N(\mu, \sigma^2)$, then

$$Z=rac{X-\mu}{\sigma}\sim N(0,1).$$

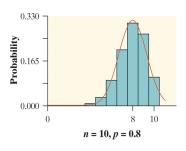
Very Useful!

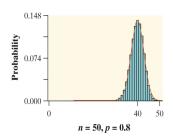
Example: The number of hours that people watch TV is normally distributed with mean 6.0 hours and standard deviation 2.5 hours. (Is this reasonable?) What is the probability that a randomly selected person watches more than 8 hours of TV per day? [.2119]

Recall that, if $X \sim B(n, \theta)$, its pmf is

$$P(X = x) = \binom{n}{x} \theta^x (1 - \theta)^{n-x}, \quad x = 0, \dots, n.$$
 When $n >> 1$, it is hard to calculate associated quantities in general.

As n gets larger, something interesting happens to the shape of a binomial distribution $B(n, \theta)$:





Proposition. Consider r.v. $X \sim B(n, p)$ where $np \geq 5$ and $n(1-p) \geq 5$. Then $X \sim N(\mu, \sigma^2)$ with $\mu = np, \sigma^2 = np(1-p)$.

2.4.2 Continuous Distributions: Exponential Distribution

Definition. A r.v. X has an **exponential** distribution with $\lambda > 0$, denoted by $X \sim \textit{Exponential}(\lambda)$ or $NE(\lambda)$ if it has pdf

$$f(x) = \lambda e^{-\lambda x}, \quad x > 0.$$

- ▶ The pdf is decreasing for x > 0, and asymmetric.
- ▶ The cdf is $F(x) = 1 e^{-\lambda x}$ for x > 0.
- $E(X) = 1/\lambda$ and $V(X) = 1/\lambda^2$.
- ▶ $NE(\lambda)$ is a special case, when $\alpha = 1, \beta = 1/\lambda$, of the Gamma distribution $Gamma(\alpha, \beta)$:

$$f(x) = \frac{x^{\alpha - 1}e^{-x/\beta}}{\beta^{\alpha}\Gamma(\alpha)}, \quad x > 0,$$

$$\Gamma(\alpha) = \int_0^\infty x^{\alpha-1} e^{-x} dx$$
 and $\alpha > 0, \beta > 0$.

More on the exponential distn

▶ The exponential distribution has the *memoryless* property:

$$P(X > a + b | X > a) = P(X > b), a > 0, b > 0.$$

e.g. Suppose that the lifespan of a lightbulb in hours $X \sim NE(\lambda)$. The prob of a used lightbulb (that has already lasted a hours) lasts an additional b hours or more is the same as a new lightbulb does.

▶ Recall $\{N(t), t > 0\}$ is a Poisson process with the rate of λ , (the number of events over [0,1]) $X = N(1) \sim Poisson(\lambda)$. In fact, $N(t) \sim Poisson(\lambda t)$.

Y=the waiting time until the first event follows $NE(\lambda)$:

$$P(Y \le y) = 1 - P(N(y) = 0) = 1 - e^{-\lambda y}.$$

What will we do in the next class?

- 1. Introduction
- 2. Probability and Distribution (Chp 1-3)
- 2.4 Some Important Distributions (Chp3)
 - 2.4.1 Discrete Distributions
 - 2.4.2 Continuous Distributions
 - 2.4.3 Multivariate Distributions
 - 2.4.4 Distributions Induced from Others
- 3. Essential Topics in Mathematical Statistics (Chp 4-6)
- 4. Further Topics, Selected from Chp 7-11