
What to study today (Oct 5, 2020)?
2. Probability and Distribution (Chp 1-3)

2.1 Probability (Chp1.1-4)

2.2 Random Variable and Distribution (Chp1.5-10)

2.3 Multivariate Distribution (Chp2)
I 2.3.1 Basic Concepts with Two Random Variables
I 2.3.2 Conditional Distribution and Expectation
I 2.3.3 Extension to Several Random Variables

2.4 Some Important Distributions (Chp3)
I 2.4.1 Discrete Distributions
I 2.4.2 Continuous Distributions
I 2.4.3 Multivariate Distributions
I 2.4.4 Distributions Induced from Others
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2.3.3 Extension to Several Random Variables:
General Issues

Consider K (> 2) rvs X1,X2, . . . ,XK : (We have to miss a lot if

studing them one at a time or two at a time.)
Definition. The joint cdf of the random vector (X1,X2, . . . ,XK )
is F (x1, x2, . . . , xk) = P(X1 ≤ x1,X2 ≤ x2, . . . ,XK ≤ xk) for
−∞ < x1, x2, . . . , xK <∞.

I In general X1 ∼ FX1(x1) = F (x1,∞, . . . ,∞),
X1,X2 ∼ FX1,X2(x1, x2) = F (x1, x2, . . . ,∞), etc.

I When X1, . . . ,XK are discrete, the joint pmf of (X1, . . . ,XK ) is
p(x1, . . . , xK ) = P(X1 = x1, . . . ,XK = xK ); when X1, . . . ,XK are
continuous, the joint pdf of (X1, . . . ,XK ) is f (x1, . . . , xK ) such that
P
(
(X1, . . . ,XK ) ∈ A

)
=
∫
. . .
∫
A
f (x1, . . . , xK )dx1 . . . dxK for

A ∈ RK .

I K rvs X1, . . . ,XK are independent iff
F (x1, . . . , xK ) = FX1(x1) . . .FXK

(xK ) for −∞ < x1, . . . , xK <∞.

I If Y = g(X1, . . . ,XK ),
E (Y ) =

∫
. . .
∫
RK g(x1, . . . , xK )dF (x1, . . . , xK ).



2.3.3 Extension to Several Random Variables: Linear
Combination

Consider linear combinations of rvs X1, . . . ,Xn and Y1, . . . ,Ym:
T =

∑n
i=1 aiXi and W =

∑m
j=1 bjYj .

I E (T ) =
∑n

i=1 aiE (Xi ); E (W ) =
∑m

j=1 bjE (Yj)

I V (T ) =
∑n

i=1 a
2
i V (Xi ) + 2

∑
i<j aiajCov(Xi ,Xj)

I Cov(T ,W ) =
∑n

i=1

∑m
j=1 aibjCov(Xi ,Yj).

In the special case with rvs X1, . . . ,Xn indept and identically
distributed (iid) and E (Xi ) = µ, Var(Xi ) = σ2,

I E (T ) =
[∑n

i=1 ai
]
µ,

I V (T ) =
[∑n

i=1 a
2
i

]
σ2,

I Moreover, the mgf of T is M(u) =
∏n

i=1MX (aiu).

I If X1, . . . ,Xn are indpt of Y1, . . . ,Ym, Cov(T ,W ) = 0.



2.4 Some Important Distributions (Chp3)

2.4.1 Discrete Distributions: Discrete Uniform
Distribution

Definition. r.v. X has a discrete uniform distribution on
a1, . . . , am, if

p(x) = 1/m, x = a1, . . . , am.

Physical Setting: X takes each of its possible values equally likely.

I E (X ) = (a1 + . . .+ am)
/
m =

∑m
i=1 ai

/
m;

Var(X ) =
∑m

i=1(ai − E (X ))2
/
m.

I Example. X is the outcome attained by rolling a fair six-sided
die: p(x) = 1/6, x = 1, . . . , 6.



2.4.1 Discrete Distributions: Binomial Distributions
and Related

Definition. A random experiment is called a Bernoulli
experiment if it has two possible outcomes, say, success vs failure.

I Define rv as X (success) = 1 and X (failure) = 0. Then X is a
Bernoulli random variable.

I The distribution of X is called the Bernoulli distribution. Its
pmf is p(x) = θx(1− θ)1−x , for x = 0, 1 if P(X = 1) = θ.

I E (X ) = θ; Var(X ) = θ(1− θ).
I The mgf of X is M(t) = 1− θ + etθ.

Definition. When a Bernoulli experiment is repeated n times
independently, a sequence of n Bernoulli trials occurs.



2.4.1 Discrete Distributions: Binomial Distributions
and Related

Definition. The distribution of a rv X is called a binomial

distribution if its pmf is p(x) = P(X = x) =

(
n
x

)
θx(1− θ)n−x

for x = 0, 1, . . . , n, denoted by X ∼ B(n, θ).

Physical Setting: Consider n Bernoulli trials, where the probability of
success in every trial is θ. The the distribution of rv X= the number of
successes is B(n, θ).

I E (X ) = nθ; Var(X ) = nθ(1− θ)

I Example. Flipping an even coin three times independently.
X=number of heads. X ∼ B(3, 1/2).

I The Bernoulli distribution is B(1, θ).

I If X ∼ B(n, θ), then X = Y1 + Y2 + · · ·+ Yn with Y1, . . . ,Yn indpt
and P(Y1 = 1) = · · · = P(Yn = 1) = θ.



2.4.1 Discrete Distributions: Binomial Distributions
and Related

Physical Setting: Consider a sequence of Bernoulli trials with
probability θ of success. Let X denote the trial number on which
the first success occurs.

Definition. The distribution of rv X is a geometric distribution
with pmf

p(x) = P(X = x) = θ(1− θ)x−1, x = 1, 2, . . .

with 0 ≤ θ ≤ 1.

I E (X ) = 1
θ ; Var(X ) = 1−θ

θ2
.

I Example. Toss an even coin until a head. The number of
attempts follows the geometric distribution with θ = 1/2.



2.4.1 Discrete Distributions: Binomial Distributions
and Related

Physical Setting: Consider a sequence of Bernoulli trials with probability

of success θ. Let X denote the trial number on which the rth success

occurs.

Definition. The distribution of X is a negative binomial
distribution with its pmf

p(x) = P(X = x) =

(
x − 1
r − 1

)
θr (1− θ)x−r , x = r , r + 1, . . .

with r ≥ 0 and 0 ≤ θ ≤ 1. Denote X ∼ NB(r , θ).

I E (X ) = r
θ ; Var(X ) = r(1−θ)

θ2 .

I Example. Toss an even coin until the 3rd head. The number of
attempts follows NB(r , θ) with θ = 1/2 and r = 3.



2.4.1 Discrete Distributions: Hypergeometric Distribution.

Definition. r.v. X has a hypergeometric distn if

p(x) = P(X = x) =

(
N1

x

)(
N2

n − x

)
(

N
n

)
for max(0, n − N2) ≤ x ≤ min(n,N1) with N = N1 + N2.

Physical Setting: Randomly select n items without replacement
from a group of N = N1 + N2 items, where N1 items are in
Category 1 and N2 in Category 2. Let X be the number of selected
items in Category 1.



2.4.1 Discrete Distributions: Poisson Distribution.

Definition. A r.v. X has a Poisson distribution, denoted by
X ∼ Poisson(λ), if its pmf is

P(X = x) = p(x) =
λxe−λ

x!
, x = 0, 1, 2, . . .

The distn is named after S.D. Poisson (1781-1840).

Comments.

I The Poisson distn is especially good at modelling rare events.

I P(X = 0) = e−λ; E (X ) = Var(X ) = λ.

I X ∼ Poisson(λ) vs X ∼ Bin(n, θ): difference and connection?

I Consider X1 ∼ Poisson(λ1) and X2 ∼ Poisson(λ2). If
X1 ⊥⊥ X2, Y = X1 + X2 ∼ Poisson(λ) with λ = λ1 + λ2.



2.4.2 Continuous Distributions: Uniform
Distribution.

Definition. A rv X has a Uniform(a,b) distribution if its pdf is

f (x) =

{
1

b−a a ≤ x ≤ b

0 otherwise

I E (X ) = (a + b)/2; Var(X ) = (b − a)2/12.

I Special case: X ∼ U(0, 1).



2.4.2 Continuous Distributions: Normal Distribution

The most important distribution in all of Statistics is the normal
(Gaussian) distribution.

Definition. A r.v. X has a normal distribution if its pdf

f (x) =
1√

2πσ2
exp

{
− 1

2

(x − µ
σ

)2}
, −∞ < x <∞,

where σ > 0. Denote it by X ∼ N(µ, σ2).

I If X ∼ N(µ, σ2), E (X ) = µ and V (X ) = σ2.

I If X ∼ N(µ, σ2), f (x) > 0 for all x and the cdf
F (x) =

∫ x
−∞ f (u)du has no closed form.

I N(µ, σ2): a family of distributions.
I e.g. N(0, 1), the standard normal distribution.

F (x) of N(0, 1) is often denoted by Φ(x) and the rv by Z .



Proposition. If X ∼ N(µ, σ2), then

Z =
X − µ
σ

∼ N(0, 1).

Very Useful!

Example: The number of hours that people watch TV is normally
distributed with mean 6.0 hours and standard deviation 2.5 hours.
(Is this reasonable?) What is the probability that a randomly
selected person watches more than 8 hours of TV per day? [.2119]



Recall that, if X ∼ B(n, θ), its pmf is

P(X = x) =

(
n
x

)
θx(1− θ)n−x , x = 0, . . . , n. When n >> 1, it

is hard to calculate associated quantities in general.
As n gets larger, something interesting happens to the shape of a
binomial distribution B(n, θ):

Proposition. Consider r.v. X ∼ B(n, p) where np ≥ 5 and
n(1− p) ≥ 5. Then X ∼ N

(
µ, σ2

)
with µ = np, σ2 = np(1− p).



2.4.2 Continuous Distributions: Exponential
Distribution

Definition. A r.v. X has an exponential distribution with λ > 0,
denoted by X ∼ Exponential(λ) or NE (λ) if it has pdf

f (x) = λe−λx , x > 0.

I The pdf is decreasing for x > 0, and asymmetric.

I The cdf is F (x) = 1− e−λx for x > 0.

I E (X ) = 1/λ and V (X ) = 1/λ2.

I NE (λ) is a special case, when α = 1, β = 1/λ, of the Gamma
distribution Gamma(α, β):

f (x) =
xα−1e−x/β

βαΓ(α)
, x > 0,

Γ(α) =
∫∞
0 xα−1e−xdx and α > 0, β > 0.



More on the exponential distn ... ...

I The exponential distribution has the memoryless property:

P(X > a + b
∣∣X > a) = P(X > b), a > 0, b > 0.

e.g. Suppose that the lifespan of a lightbulb in hours X ∼ NE (λ).
The prob of a used lightbulb (that has already lasted a hours) lasts
an additional b hours or more is the same as a new lightbulb does.

I Recall {N(t), t > 0} is a Poisson process with the rate of λ,
(the number of events over [0, 1]) X = N(1) ∼ Poisson(λ). In
fact, N(t) ∼ Poisson(λt).
Y=the waiting time until the first event follows NE (λ):

P(Y ≤ y) = 1− P
(
N(y) = 0

)
= 1− e−λy .



What will we do in the next class?

1. Introduction

2. Probability and Distribution (Chp 1-3)

2.4 Some Important Distributions (Chp3)
I 2.4.1 Discrete Distributions
I 2.4.2 Continuous Distributions
I 2.4.3 Multivariate Distributions
I 2.4.4 Distributions Induced from Others

3. Essential Topics in Mathematical Statistics (Chp 4-6)

4. Further Topics, Selected from Chp 7-11
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