What to study today (Oct 7, 2020)?

2. Probability and Distribution (Chp 1-3)

2.1 Probability (Chp1.1-4)

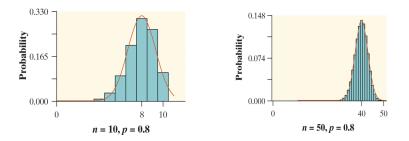
2.2 Random Variable and Distribution (Chp1.5-10)

2.3 Multivariate Distribution (Chp2)

2.4 Some Important Distributions (Chp3)

- 2.4.1 Discrete Distributions
- 2.4.2 Continuous Distributions
- 2.4.3 Multivariate Distributions
- 2.4.4 Distributions Induced from Others

Recall that, if $X \sim B(n, \theta)$, its pmf is $P(X = x) = {n \choose x} \theta^x (1 - \theta)^{n-x}$, x = 0, ..., n. When n >> 1, it is hard to calculate associated quantities in general. As n gets larger, something interesting happens to the shape of a binomial distribution $B(n, \theta)$:



Proposition. Consider r.v. $X \sim B(n, p)$ where $np \ge 5$ and $n(1-p) \ge 5$. Then $X \sim N(\mu, \sigma^2)$ approximately with $\mu = np, \sigma^2 = np(1-p)$.

2.4.2 Continuous Distributions: Exponential Distribution

Definition. A r.v. X has an **exponential** distribution with $\lambda > 0$, denoted by $X \sim Exponential(\lambda)$ or $NE(\lambda)$ if it has pdf

$$f(x) = \lambda e^{-\lambda x}, \quad x > 0.$$

- The pdf is decreasing for x > 0, and asymmetric.
- The cdf is $F(x) = 1 e^{-\lambda x}$ for x > 0.

•
$$E(X) = 1/\lambda$$
 and $V(X) = 1/\lambda^2$.

NE(λ) is a special case, when α = 1, β = 1/λ, of the Gamma distribution Gamma(α, β):

$$f(x) = \frac{x^{\alpha-1}e^{-x/\beta}}{\beta^{\alpha}\Gamma(\alpha)}, \quad x > 0,$$

$$\Gamma(\alpha) = \int_0^\infty x^{\alpha-1} e^{-x} dx$$
 and $\alpha > 0, \beta > 0$.

More on the exponential distn

The exponential distribution has the *memoryless* property:

$$P(X>a+big|X>a)=P(X>b), \hspace{0.2cm} a>0, \hspace{0.2cm} b>0.$$

e.g. Suppose that the lifespan of a lightbulb in hours $X \sim NE(\lambda)$. The prob of a used lightbulb (that has already lasted *a* hours) lasts an additional *b* hours or more is the same as a new lightbulb does.

Recall {N(t), t > 0} is a Poisson process with the rate of λ, (the number of events over [0, 1]) X = N(1) ~ Poisson(λ). In fact, N(t) ~ Poisson(λt).
 Y=the waiting time until the first event follows NE(λ):
 P(Y ≤ y) = 1 - P(N(y) = 0) = 1 - e^{-λy}.

More on Univariate Distributions

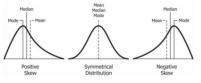
Consider rv X,

• expectation (the population mean) $E(X) = \int x dF(x)$, often denoted by μ

• median *m* satisfies $P(X \le m) \ge 1/2$ and $P(X \ge m) \ge 1/2$

variance Var(X) = E[(X − μ)²] = E(X²) − (EX)², often denoted by σ²; standard deviation σ = √Var(X).

• skewness $E\left\{\left[\frac{X-\mu}{\sigma}\right]^3\right\}$: left-tailed, symmetric, right-tailed



– Wikipedia

• kurtosis
$$E\left\{\left[\frac{X-\mu}{\sigma}\right]^4\right\}$$
: if $X \sim N(\mu, \sigma^2)$, $Kurt(X) = 3$

II.4.3 Multivariate Distributions: Multinomial Distn

- Consider that a random experiment results in *K* mutually exclusive and exhaustive outcomes C₁,..., C_K, with probabilities θ₁,..., θ_K for 0 ≤ θ₁,..., θ_K ≤ 1 and ∑ θ_k = 1.
- Repeat the experiment n times independently. Denote the number of kth outcome by X_k for k = 1,..., K

Definition. The distribution of $rv(X_1, ..., X_K)$ is called a **multinomial** distribution with pmf $p(x_1, ..., x_K)$ as follows

$$P(X_1 = x_1, \ldots, X_K = x_K) = \begin{pmatrix} n \\ x_1, \ldots, x_K \end{pmatrix} \theta_1^{x_1} \theta_2^{x_2} \ldots \theta_K^{x_K}$$

for $x_1, \ldots, x_K = 0, 1, \ldots, n$ and $\sum x_k = n$.

II.4.3 Multivariate Distributions: Multinomial Distn

If $rv(X_1, \ldots, X_K)$ follows a multinomial distn $Multin(n; \theta_1, \ldots, \theta_K)$,

•
$$X_1 + \ldots + X_K = n$$
 and $\theta_1 + \ldots + \theta_K = 1$

It he special cases of K = 2, the binomial distn B(n, θ₁), and K = 3, the trinomial distn Trino(n; θ₁, θ₂, θ₃)

► the mgf of
$$(X_1, ..., X_K)$$
:
 $\{\theta_1 e^{t_1} + ... + \theta_K e^{t_K}\}^n$

▶ in general,
$$X_1 \sim B(n, \theta_1), \ldots, X_K \sim B(n, \theta_K)$$

▶ in general, $(X_1, X_2, Z) \sim Trino(n; \theta_1, \theta_2, \theta_z)$ with $Z = n - X_1 - X_2, \ \theta_z = 1 - \theta_1 - \theta_2; \ \dots \ \dots$

II.4.3 Multivariate Distributions: Multivariate Normal Distn

Definition. Random vector $\mathbf{X} = (X_1, \dots, X_K)'$ follows a **multivariate normal** distn, denoted by $\mathbf{X} \sim MN(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, if its pdf is

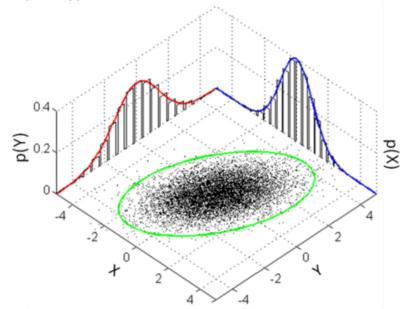
$$f_{\mathbf{X}}(\mathbf{x}) = \frac{1}{(2\pi)^{K/2} |\mathbf{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})' \mathbf{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\}, \text{ for } \mathbf{x} \in \mathcal{R}^{K}.$$

Here $\boldsymbol{\mu} = (\mu_1, \dots, \mu_K)'$ and $\boldsymbol{\Sigma}$ is a $K \times K$, symmetric, positive semi-definite matrix.

A special case of K = 2: rv (X, Y)' follows a **bivariate normal** distn, denoted by $(X, Y) \sim BN(\mu, \Sigma)$, if its pdf (or the joint pdf of X and Y) is, for $x, y \in \mathcal{R}$,

$$f_{X,Y}(x,y) = \frac{1}{(2\pi)^{2/2} |\Sigma|^{1/2}} \exp \Big\{ -\frac{1}{2} \left(\begin{array}{c} x - \mu_1 \\ y - \mu_2 \end{array} \right)' \Sigma^{-1} \left(\begin{array}{c} x - \mu_1 \\ y - \mu_2 \end{array} \right) \Big\},$$

II.4.3 Multivariate Distributions: Multivariate Normal Distn



If $\mathbf{X} \sim MN(\boldsymbol{\mu}, \boldsymbol{\Sigma})$,

•
$$E(\mathbf{X}) = \mu$$
, that is $X_k = \mu_k$; $Var(\mathbf{X}) = \Sigma$, that is $Cov(X_i, X_j) = \sigma_{ij}$ if $\Sigma = (\sigma_{ij})_{K \times K}$.

- the gmf is $M_{\mathbf{X}}(\mathbf{t}) = E[e^{\mathbf{t}'\mathbf{X}}] = \exp{\{\mathbf{t}'\boldsymbol{\mu} + \frac{1}{2}\mathbf{t}'\Sigma\mathbf{t}\}}.$
- X_1, \ldots, X_K are indpt iff Σ is diagonal.

► rv
$$Y = a_1 X_1 + \ldots + a_K X_K \sim N(\mu_Y, \sigma_Y^2)$$
 with
 $\mu_Y = a_1 \mu_1 + \ldots + a_K \mu_K = \mathbf{a}' \mu$ and $\sigma_Y^2 = \mathbf{a}' \Sigma \mathbf{a}$.

- Special cases: $X_1 \sim N(\mu_1, \sigma_{11}), \ldots, X_K \sim N(\mu_K, \sigma_{KK})$
- If any a linear combination of W₁,..., W_n is normally distributed, W ~ MN(μ_W, Σ_W).

• rv
$$\mathbf{Z} = \Sigma^{-1/2} (\mathbf{X} - \boldsymbol{\mu}) \sim MN(\mathbf{0}, \mathbf{I}).$$

the pdf of Z is

$$f_{\mathbf{Z}}(\mathbf{z}) = \left(\frac{1}{2\pi}\right)^{K/2} \exp\left\{-\frac{1}{2}\mathbf{z}'\mathbf{z}\right\} = \prod_{k=1}^{K} \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{1}{2}z_{k}^{2}\right\},$$

for $\mathbf{z} = (z_1, \dots, z_K)' \in \mathcal{R}^K$. Z_1, \dots, Z_K are independent and identically distributed (iid) with the distn N(0, 1).

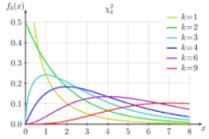
II.4.4 Distributions Induced from Others:

 χ^2 -**Distribution Definition.** If Z_1, \ldots, Z_r are indpt and all follow N(0, 1), the distribution of $V = Z_1^2 + \ldots + Z_r^2$ is the χ^2 -distribution with the degrees of freedom (df) r, denoted by $V \sim \chi^2(r)$.

•
$$E(V) = r$$
 and $Var(V) = 2r$

The pdf of V is

• $\chi^2(r)$ is a special case of Γ -distn: $\Gamma(r/2, 2)$.



II.4.4 Distributions Induced from Others: Student's

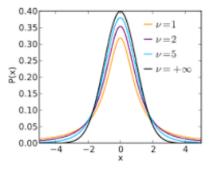
t-Distribution

Definition. If $W \sim N(0, 1)$, $V \sim \chi^2(r)$, and W, V are indpt, the distn of $T = \frac{W}{\sqrt{V/r}}$ is the **Student's t-distribution** with df *r*. (W.S. Gosset, 1908)

•
$$E(T) = 0$$
 and $Var(T) = E(T^2) = \frac{r}{r-2}$ if $r > 2$.

• If r >> 1, T's distn is approximately N(0,1).

• Skew
$$(T) = 0$$
 and $Kurt(T) = \frac{3r-6}{r-4} = 3 + \frac{6}{r-4}$ if $r > 4$.



- Wikinedia

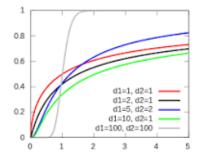
II.4.4 Distributions Induced from Others:

F-Distribution

Definition. If $U \sim \chi^2(r_1)$, $V \sim \chi^2(r_2)$, and U, V are indpt, the distribution of $W = \frac{U/r_1}{V/r_2}$ is the **F**-distribution with the degrees of freedom r_1, r_2 , denoted by $W \sim F(r_1, r_2)$.

•
$$E(W) = \frac{r_2}{r_2-2}$$
.
• The distn of $1/W$ is $F(r_2, r_1)$.

• If
$$T \sim t - distn(r)$$
, $T^2 \sim F(1, r)$.



Wikipedia

What will we do in the next class?

1. Introduction

2. Probability and Distribution (Chp 1-3)

2.4 Some Important Distributions (Chp3)

- 2.4.1 Discrete Distributions
- 2.4.2 Continuous Distributions
- 2.4.3 Multivariate Distributions
- 2.4.4 Distributions Induced from Others

3. Essential Topics in Mathematical Statistics (Chp 4-6)

- ► 3.1 Elementary Statistical Inferences
- ► 3.2 Consistency and Limiting Distributions
- 3.3 Maximum Likelihood Methods
- 4. Further Topics, Selected from Chp 7-11