What to do today (Oct 14, 2020)?

2. Probability and Distribution (Chp 1-3)
2.4 Some Important Distributions (Chp3)

- 2.4.1 Discrete Distributions
- 2.4.2 Continuous Distributions
- 2.4.3 Multivariate Distributions
- 2.4.4 Distributions Induced from Others

3. Essential Topics in Mathematical Statistics (Chp 4-6)
3.1 Elementary Statistical Inferences (Chp 3)

- 3.1.1 Sampling and Statistics
- 3.1.2 Confidence Interval
- 3.1.3 Order Statistics
- 3.1.4 Hypothesis Testing
- 3.1.5 Statistical Simulation and Bootstrap

2.4.4 Distributions Induced from Others:

Distribution of Functions of Random Variables

 rvs X_{1}, \ldots, X_{K}, and their functions$Y_{1}=g_{1}\left(X_{1}, \ldots, X_{K}\right), \ldots, Y_{K}=g_{K}\left(X_{1}, \ldots, X_{K}\right)$. What are the distributions of Y_{1}, \ldots, Y_{K} if the joint distn of X_{1}, \ldots, X_{K} is known?
Suppose the mapping $\mathbf{g}: \mathbf{X}=\left(X_{1}, \ldots, X_{K}\right) \rightarrow \mathbf{Y}=\left(Y_{1}, \ldots, Y_{K}\right)$ is one-to-one. Thus

$$
\mathbf{h}=\mathbf{g}^{-1}: \mathbf{Y}=\left(Y_{1}, \ldots, Y_{K}\right) \rightarrow \mathbf{X}=\left(X_{1}, \ldots, X_{K}\right)
$$

That is, $X_{1}=h_{1}\left(Y_{1}, \ldots, Y_{K}\right), \ldots, X_{K}=h_{K}\left(Y_{1}, \ldots, Y_{K}\right)$.
Consider $K=2$: in principle,

$$
\begin{aligned}
F_{\mathbf{Y}}\left(y_{1}, y_{2}\right) & =P\left(Y_{1} \leq y_{1}, Y_{2} \leq y_{2}\right) \\
& =P\left(g_{1}\left(X_{1}, X_{2}\right) \leq y_{1}, g_{2}\left(X_{1}, x_{2}\right) \leq y_{2}\right) \\
& =\iiint \begin{array}{l}
g_{1}\left(x_{1}, x_{2}\right) \leq y_{1} \\
g_{2}\left(x_{1}, x_{2}\right) \leq y_{2}
\end{array} d F_{\mathbf{X}}\left(x_{1}, x_{2}\right) .
\end{aligned}
$$

2.4.4 Distributions Induced from Others:
 Distribution of Functions of Random Variables

- if X_{1}, X_{2} are discrete with the joint $\mathrm{pmf} p_{\mathbf{X}}\left(x_{1}, x_{2}\right)$,

$$
\begin{aligned}
p_{\mathbf{Y}}\left(y_{1}, y_{2}\right) & =P\left(g_{1}\left(x_{1}, x_{2}\right)=y_{1}, g_{2}\left(X_{1}, x_{2}\right)=y_{2}\right) \\
& =P\left(x_{1}=h_{1}\left(y_{1}, y_{2}\right), x_{2}=h_{2}\left(y_{1}, y_{2}\right)\right) \\
& =p_{\mathbf{X}}\left(h_{1}\left(y_{1}, y_{2}\right), h_{2}\left(y_{1}, y_{2}\right)\right)
\end{aligned}
$$

- if X_{1}, X_{2} are continuous with the joint pdf $f_{\mathbf{X}}\left(x_{1}, x_{2}\right)$,

$$
\begin{aligned}
& f_{\mathbf{Y}}\left(y_{1}, y_{2}\right)=\frac{\partial^{2} F_{\mathbf{Y}}\left(y_{1}, y_{2}\right)}{\partial y_{1} \partial y_{2}} \\
= & \begin{cases}|J| f_{\mathbf{X}}\left(h_{1}\left(y_{1}, y_{2}\right), h_{2}\left(y_{1}, y_{2}\right)\right), & \left(y_{1}, y_{2}\right) \in \text { the support of }\left(Y_{1}, Y_{2}\right) \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

The Jacobian of the transformation is the determinant:

$$
J=\left|\frac{\partial\left(x_{1}, x_{2}\right)}{\partial\left(y_{1}, y_{2}\right)}\right|=\left|\begin{array}{ll}
\frac{\partial x_{1}}{\partial y_{1}} & \frac{\partial x_{1}}{\partial y_{2}} \\
\frac{\partial x_{2}}{\partial y_{1}} & \frac{\partial x_{2}}{\partial y_{2}}
\end{array}\right|=\left|\begin{array}{ll}
\frac{\partial h_{1}\left(y_{1}, y_{2}\right)}{\partial y_{1}} & \frac{\partial h_{1}\left(y_{1}, y_{2}\right)}{\partial y_{2}} \\
\frac{\partial h_{2}\left(y_{1}, y_{2}\right)}{\partial y_{1}} & \frac{\partial h_{2}\left(y_{1}, y_{2}\right)}{\partial y_{2}}
\end{array}\right|
$$

2.4.4 Distributions Induced from Others: Examples of Mixture Distributions

Consider two rvs X and W with joint distn $F(x, w)$.

- If the distn of X conditional on $W=w$ is $F(x \mid w)$, rv X 's distn is $\int F(x \mid w) d F_{W}(w)$: a mixture of distributions $F(x \mid w)$ with all possible w's.
- Example 1. If W is discrete with pmf $p_{W}(w)$ for $w=w_{1}, \ldots, w_{K}, X$'s distn is a mixture of the K distn's $F\left(x \mid w_{1}\right), \ldots, F\left(x \mid w_{K}\right):$

$$
X \sim F\left(x \mid w_{1}\right) p_{W}\left(w_{1}\right)+\ldots+F\left(x \mid w_{K}\right) p_{W}\left(w_{K}\right)
$$

eg, a contaminated normal distn: if $W \sim B(1, p)$, $X=Z_{1} W+Z_{0}(1-W)$ with $Z_{1} \sim N\left(\mu_{1}, \sigma_{1}^{2}\right), Z_{0} \sim N\left(\mu_{0}, \sigma_{0}^{2}\right)$.

2.4.4 Distributions Induced from Others: Examples of Mixture Distributions

Consider two rvs X and W with joint distn $F(x, w)$.

- If the distn of X conditional on $W=w$ is $F(x \mid w)$, rv X 's distn is $\int F(x \mid w) d F_{W}(w)$: a mixture of distributions $F(x \mid w)$ with all possible w's.
- Example 2. If W is continuous $r v$ with pdf $f_{W}(w)$ for $w \in \mathcal{R}$, X 's distn is a mixture of the distn's $\{F(x \mid w): w \in \mathcal{R}\}$:

$$
X \sim \int F(x \mid w) f_{W}(w) d w
$$

- eg, Poisson-Gamma distn: when $X \mid W=\lambda \sim \operatorname{Poisson}(\lambda)$ and W ~ $\operatorname{Gamma}(\alpha, \beta)$.
- Negative binomial distn is a Poisson-Gamma distn : $X \sim N B(r, \theta)$ if $W \sim \operatorname{Gamma}(\alpha, \beta)$ with $\alpha=r$, an integer, and $\beta=(1-\theta) / \theta$.

3.1 Elementary Statistical Inferences
 3.1.1 Sampling and Statistics

In the information age, statistics are everywhere, since

- data are everywhere, and, on the other hand
- always resources are limited and our observation abilities are limited.

Various statistical methods.

- to efficiently collect meaningful and sufficient information: Survey Sampling and Experimental Design
- to process the available information by tabulating/plotting the data: Descriptive Analysis
- to make inference about the target population, beyond what the information is directly on: Inferential Analysis

Plus Probability and Distribution: inferential reasoning with probability theory

3.1.1 Sampling and Statistics

Why/What do we care about a random variable X ? Its distribution: its pattern of taking different values, that is, what values X takes and how often it takes a particular value.

How do we find out X 's distribution? From its observations (data: x_{1}, \ldots, x_{n}),

- (i) by picturing the data,
- (ii) by summarizing the data, and
- (iii) by estimating θ if $X \sim F(\cdot ; \theta)$

Quesitons to ask:

- What to look for from the plot?
- Does \bar{x} in general estimate μ well? What do we mean by "well"? How to assess a parameter estimator?
- Is there any systematic way to obtain a "good" estimator?
- What kind of observations are desirable?

What will we do in the next class?

1. Introduction
2. Probability and Distribution (Chp 1-3)
3. Essential Topics in Mathematical Statistics (Chp 4-6)

- 3.1 Elementary Statistical Inferences
- 3.1.1 Sampling and Statistics
- 3.1.2 Confidence Interval
- 3.1.3 Order Statistics
- 3.1.4 Hypothesis Testing
- 3.1.5 Statistical Simulation and Bootstrap
- 3.2 Consistency and Limiting Distributions
- 3.3 Maximum Likelihood Methods

4. Further Topics, Selected from Chp 7-11
