
What to do today (Oct 14, 2020)?
2. Probability and Distribution (Chp 1-3)
2.4 Some Important Distributions (Chp3)

I 2.4.1 Discrete Distributions
I 2.4.2 Continuous Distributions
I 2.4.3 Multivariate Distributions
I 2.4.4 Distributions Induced from Others

3. Essential Topics in Mathematical Statistics (Chp
4-6)
3.1 Elementary Statistical Inferences (Chp 3)

I 3.1.1 Sampling and Statistics
I 3.1.2 Confidence Interval
I 3.1.3 Order Statistics
I 3.1.4 Hypothesis Testing
I 3.1.5 Statistical Simulation and Bootstrap
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2.4.4 Distributions Induced from Others:
Distribution of Functions of Random Variables

rvs X1, . . . ,XK , and their functions
Y1 = g1(X1, . . . ,XK ), . . . ,YK = gK (X1, . . . ,XK ). What are the
distributions of Y1, . . . ,YK if the joint distn of X1, . . . ,XK is
known?
Suppose the mapping g: X = (X1, . . . ,XK )→ Y = (Y1, . . . ,YK )
is one-to-one. Thus

h = g−1 : Y = (Y1, . . . ,YK )→ X = (X1, . . . ,XK ).

That is, X1 = h1(Y1, . . . ,YK ), . . . ,XK = hK (Y1, . . . ,YK ).

Consider K = 2: in principle,

FY(y1, y2) = P(Y1 ≤ y1,Y2 ≤ y2)

= P
(
g1(X1,X2) ≤ y1, g2(X1,X2) ≤ y2

)
=

∫ ∫
g1(x1, x2) ≤ y1
g2(x1, x2) ≤ y2

dFX(x1, x2).



2.4.4 Distributions Induced from Others:
Distribution of Functions of Random Variables

I if X1,X2 are discrete with the joint pmf pX(x1, x2),

pY(y1, y2) = P
(
g1(X1,X2) = y1, g2(X1,X2) = y2

)
= P

(
X1 = h1(y1, y2),X2 = h2(y1, y2))

= pX

(
h1(y1, y2), h2(y1, y2)

)
.

I if X1,X2 are continuous with the joint pdf fX(x1, x2),

fY(y1, y2) =
∂2FY(y1, y2)

∂y1∂y2

=

{ ∣∣J∣∣fX(h1(y1, y2), h2(y1, y2)
)
, (y1, y2) ∈ the support of (Y1,Y2)

0, otherwise

The Jacobian of the transformation is the determinant:

J =
∣∣∂(x1, x2)

∂(y1, y2)

∣∣ =

∣∣∣∣∣ ∂x1
∂y1

∂x1
∂y2

∂x2
∂y1

∂x2
∂y2

∣∣∣∣∣ =

∣∣∣∣∣
∂h1(y1,y2)

∂y1

∂h1(y1,y2)
∂y2

∂h2(y1,y2)
∂y1

∂h2(y1,y2)
∂y2

∣∣∣∣∣



2.4.4 Distributions Induced from Others: Examples
of Mixture Distributions

Consider two rvs X and W with joint distn F (x ,w).
I If the distn of X conditional on W = w is F (x |w), rv X ’s

distn is
∫
F (x |w)dFW (w): a mixture of distributions F (x |w)

with all possible w ’s.
I Example 1. If W is discrete with pmf pW (w) for

w = w1, . . . ,wK , X ’s distn is a mixture of the K distn’s
F (x |w1), . . . ,F (x |wK ):

X ∼ F (x |w1)pW (w1) + . . .+ F (x |wK )pW (wK ).

eg, a contaminated normal distn: if W ∼ B(1, p),
X = Z1W +Z0(1−W ) with Z1 ∼ N(µ1, σ

2
1),Z0 ∼ N(µ0, σ

2
0).

– Wikipedia



2.4.4 Distributions Induced from Others: Examples
of Mixture Distributions

Consider two rvs X and W with joint distn F (x ,w).

I If the distn of X conditional on W = w is F (x |w), rv X ’s
distn is

∫
F (x |w)dFW (w): a mixture of distributions F (x |w)

with all possible w ’s.

I Example 2. If W is continuous rv with pdf fW (w) for w ∈ R,
X ’s distn is a mixture of the distn’s

{
F (x |w) : w ∈ R

}
:

X ∼
∫

F (x |w)fW (w)dw .

I eg, Poisson-Gamma distn: when X |W = λ ∼ Poisson(λ) and
W ∼ Gamma(α, β).

I Negative binomial distn is a Poisson-Gamma distn :
X ∼ NB(r , θ) if W ∼ Gamma(α, β) with α = r , an integer,
and β = (1− θ)/θ.



3.1 Elementary Statistical Inferences
3.1.1 Sampling and Statistics

In the information age, statistics are everywhere, since

I data are everywhere, and, on the other hand

I always resources are limited and our observation abilities are
limited.

Various statistical methods.

I to efficiently collect meaningful and sufficient information:
Survey Sampling and Experimental Design

I to process the available information by tabulating/plotting the
data: Descriptive Analysis

I to make inference about the target population, beyond what
the information is directly on: Inferential Analysis

Plus Probability and Distribution: inferential reasoning with
probability theory



3.1.1 Sampling and Statistics
Why/What do we care about a random variable X? Its
distribution: its pattern of taking different values, that is, what
values X takes and how often it takes a particular value.

How do we find out X ’s distribution? From its observations (data:
x1, . . . , xn),

I (i) by picturing the data,

I (ii) by summarizing the data, and

I (iii) by estimating θ if X ∼ F (·; θ)

Quesitons to ask:

I What to look for from the plot?

I Does x̄ in general estimate µ well? What do we mean by
“well”? How to assess a parameter estimator?

I Is there any systematic way to obtain a “good” estimator?

I What kind of observations are desirable?

I ... ...



What will we do in the next class?

1. Introduction

2. Probability and Distribution (Chp 1-3)

3. Essential Topics in Mathematical Statistics (Chp 4-6)

I 3.1 Elementary Statistical Inferences
I 3.1.1 Sampling and Statistics
I 3.1.2 Confidence Interval
I 3.1.3 Order Statistics
I 3.1.4 Hypothesis Testing
I 3.1.5 Statistical Simulation and Bootstrap

I 3.2 Consistency and Limiting Distributions
I 3.3 Maximum Likelihood Methods

4. Further Topics, Selected from Chp 7-11
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