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3.1 Elementary Statistical Inferences
3.1.1 Sampling and Statistics

In the information age, statistics are everywhere, since

I data are everywhere, and

I always resources are limited and our observation abilities are
limited.

Various statistical methods.

I to efficiently collect meaningful and sufficient information:
Survey Sampling and Experimental Design

I to process the available information by tabulating/plotting the
data: Descriptive Analysis

I to make inference about the target population, beyond what
the information is directly on: Inferential Analysis

Plus Probability and Distribution: inferential reasoning with
probability theory



3.1.1 Sampling and Statistics
Consider rv X ∼ F (·), the population distn:

I A sample on X with size n: rvs X1, . . . ,Xn

its observations x1, . . . , xn from a study are realizations of the
sample.

I If X1, . . . ,Xn are independent and identically distributed (iid) with
the same distn F (·), the sample {X1, . . . ,Xn} is a random sample
on X with size n.

I A function of X1, . . . ,Xn, say, T = T (X1, . . . ,Xn), is called a
statistic.

I A statistic that is used to estimate a population parameter θ is
called a point estimator of θ.

Definition. Let X1, . . . ,Xn be a sample on rv X ∼ F (x ; θ). A statistic

T = T (X1, . . . ,Xn) is an unbiased estimator of θ if E (T ) = θ.

Is X̄ a “good” (point) estimator of µ? How to obtain a “good”
estimator for θ in general?



3.1.1 Sampling and Statistics: Two Commonly Used
Point Estimation Procedures

A. Method of Moments Estimation (MME)
Thinking ... Recall sample mean X̄ to estimate population mean µ.

Extend the idea to estimating kth population moment, with k = 1, 2, . . .?

Point estimation of population moments:
Suppose X ∼ F (·; θ1, . . . , θm) and iid observations X1, . . . ,Xn.

I kth population moment of X : µk = E (X k)

I kth sample moment with X1, . . . ,Xn:

µ̂k =
1

n

(
X k

1 + . . .+ X k
n

)
I Use µ̂k to estimate µk! (unbaised estimator)

eg, µ2 = E (X 2) is estimated by

µ̂2 =
1

n

(
X 2

1 + . . .+ X 2
n

)
.



Further, what if X ∼ F (·; θ1, . . . , θm) with θ1, . . . , θm not all population

moments? For example, X ∼ N(µ, σ2) : θ1 = µ; θ2 = σ2. How to

estimate µ and σ2?

Recall that
µ2 = E (X 2) = σ2 + µ2 = θ2 + θ2

1

How about use the following?{
µ̂1 = X̄ to estimate µ1 = µ;
µ̂2 to estimate σ2 + µ2

If so, then {
µ̂1 = X̄ as µ̂,
σ̂2 = µ̂2 − X̄ 2 to estimate σ2



3.1.1 Sampling and Statistics: Method of Moments
Estimation (MME)

MM Estimation Procedure:

I X1, . . . ,Xn are iid observations from the population
X ∼ F (·; θ1, . . . , θm).

I Denote the kth population mean µk by µk = µk(θ1, . . . , θm)
with k = 1, 2, . . ..

I The MM estimators θ̂1, . . . , θ̂m are the solution to the
equations jointly:

µ̂1 = µ1(θ1, . . . , θm); . . . ; µ̂m = µm(θ1, . . . , θm)

Revisit to the example of estimating µ and σ2 with X ∼ N(µ, σ2):

Solve

{
X̄ = µ,
µ̂2 = σ2 + µ2 , and obtain µ̂ = X̄ , σ̂2 = µ̂2 − X̄ 2.

Are all MM estimators good? Is there any alternative estimation
procedure?



3.1.1 Sampling and Statistics: B. Maximum
Likelihood Estimation (MLE)

by R.A. Fisher (geneticist and statistician), 1920
Likelihood Function:

I Let the joint distribution (pmf, or pdf ) of rvs X1, . . . ,Xn be
f (x1, . . . , xn; θ1, . . . , θm).
When x1, . . . , xn are the observed values (realizations) of the
rvs, the likelihood function of θ1, . . . , θm given the data is

L(θ1, . . . , θm | data ) = f (x1, . . . , xn; θ1, . . . , θm)

I interpretation: a measure on how likely the observed sample
is overall with the values of θ1, . . . , θm.

I Often X1, . . . ,Xn are iid observations (a random sample) from
the population with distribution f (x ; θ). If the observed values
are x1, . . . , xn, then the likelihood function is

L(θ | data ) =
n∏

i=1

f (xi ; θ) = f (x1; θ) . . . f (xn; θ).



Maximum Likelihood Estimator (MLE):

I The MLE θ̂1, . . . , θ̂m are the values of θ1, . . . , θm that
maximize the likelihood function:

L(θ̂1, . . . , θ̂m | data ) = max L(θ1, . . . , θm | data ).

I interpretation: The MLE θ̂1, . . . , θ̂m give the parameter
values that agree most closely with the observed sample (the
data).

I Often used procedures: (Why?)

(1) to maximize log L(θ1, . . . , θm)
(2) to obtain the solution to

∂ ln L(θ1,...,θm)
∂θ1

= 0,

......
∂ ln L(θ1,...,θm)

∂θm
= 0



For example, iid X1, . . . ,X100 ∼ N(µ, σ2) with observed values
x1, . . . , x100. The likelihood function of µ, σ2 is

L(µ, σ2|data) =
100∏
i=1

1√
2πσ2

exp
{
− 1

2σ2
(xi − µ)2

}

log L(µ, σ2|data) =
100∑
i=1

{
log
( 1√

2π

)
− 1

2
log(σ2)− 1

2σ2
(xi − µ)2

}


∂ log L(µ,σ2)
∂µ =

∑100
i=1

{
2

2σ2 (xi − µ)
}

= 0

∂ log L(µ,σ2)
∂σ2 =

∑100
i=1

{
− 1

2σ2 + 1
2(σ2)2 (xi − µ)2

}
= 0

Thus the MLE of µ, σ2 are µ̂ = X̄ , σ̂2 =
∑n

i=1(Xi − X̄ )2
/
n.



Why MLE?

Large Sample Behavior of MLE θ̂:
With a random sample of size n, as n→∞

I E (θ̂n)→ θ: approximately unbiased

I Var(θ̂n)→ σ∗2 = minVar(θ̃) with unbiased θ̃

I The distribution of θ̂n is approximately N(θ, σ∗2)

Remarks: MLE is widely used, because

I given the underlying population distribution, it is mechanically
derived by calculus-based techniques

I is almost the best estimator that can be attained,

I is convenient to use to make statistical inferences.



3.1.2 Confidence Interval

Goal: Suppose X ∼ F (·; θ) and X1, . . . ,Xn iid observations from
the population. To obtain a ‘good’ interval estimator of θ?

Definition. θ̂L and θ̂U are two statistics. The random interval(
θ̂L, θ̂U

)
is a 100(1− α)% confidence interval (CI) of θ is

P
(
θ ∈ (θ̂L, θ̂U)

)
= 100(1− α)%.

Here, (1− α) is called the confidence level of the CI.

I eg, α = 0.05, a 100(1− α)% CI of θ is a CI with confidence
level of 95%.



3.1.2 Confidence Interval

I Interpretation. (frequentist)
With 100 experiments’ outcomes, there’re at least 100(1− α)
out of the 100 CI realizations containing the true value of θ.

Bayesian interpretation: different!

I Confidence Level, Precision, and Sample Size:
I 100(1− α)% CI (θ̂L, θ̂U): the confidence level is 1− α.

P
(
θ ∈ (θ̂L, θ̂U)

)
= 1− α

I Length (Width) of CI: θ̂U − θ̂L, about CI’s
precision/accuracy.

I Often to determine the sample size n such that a 1− α CI has
a desired precision ⇒ Study Design



Example 3.1

I Study: To determine the true average response time of a new
operating system. What sample size is necessary to ensure the
resulting 95% CI has a width of (at most) 10? Assume
σ = 25.

I Stats formulation: Assuming a response time X ∼ N(µ, σ2)
with σ = 25. To obtain a 95% CI of µ with length ≤ 10

I Interval estimator:
(
X̄ − 1.96 25√

n
, X̄ + 1.96 25√

n

)
.

I Sample size determination: The length 2(1.96)(25/
√
n) is to

be at most 10:
2(1.96)(25/

√
n) ≤ 10.

Thus
√
n ≥ 2(1.96)(25)/10 = 9.80. So, n should be at least

97 (9.802 = 96.04).

Deriving a CI: a general procedure
to find θ̂L = l(X1, . . . ,Xn) and θ̂U = u(X1, . . . ,Xn) to satisfy

P
(
l(X1, . . . ,Xn) < θ < u(X1, . . . ,Xn)

)
= 1− α

How? not easy! See a few examples. ...



3.1.2 Confidence Interval: to estimate µ
Consider rv X with µ = E (X ), and a random sample

{
X1, . . . ,Xn

}
from the population.
Setting 1. X ∼ N(µ, σ2) with σ2 known.

I Point Estimator. θ̂ = X̄ = 1
n

(
X1 + · · ·+ Xn

)
: with the

following “good” properties

I E (X̄ ) = µ, unbiased
I V (X̄ ) = σ2

n , converging to zero as n→∞
I X̄ ∼ N(µ, σ

2

n )

I Confidence Interval. (θ̂L, θ̂U) with

θ̂L = X̄ − 1.96
σ√
n
, θ̂U = X̄ + 1.96

σ√
n

I P
(
(θ̂L, θ̂U) 3 µ

)
= 95%,

since P
(
θ̂L ≥ µ

)
= 2.5% and P

(
θ̂U ≥ µ

)
= 97.5%.

I for a general α?



3.1.2 Confidence Interval: to estimate µ
Consider rv X with µ = E (X ), and a random sample

{
X1, . . . ,Xn

}
from the population.
Setting 2. X ∼ N(µ, σ2) with σ2 unknown.

I Point Estimator. µ̂ = X̄ with “Good” properties:
I E (X̄ ) = µ; V (X̄ ) = σ2

n ; X̄ ∼ N(µ, σ
2

n )

How about the unknown σ2?

σ̂2 = S2 =
1

n − 1

n∑
i=1

(Xi − X̄ )2

I E (S2) = σ2; distn of S2?

Proposition. (1) (n−1)S2

σ2 ∼ χ2(n − 1). (2) S2 and X̄ are indpt. (3)

T = X̄−µ
σ̂/
√
n
∼ t(n − 1).

I Confidence Interval. (θ̂L, θ̂U) with

θ̂L = X̄ −
(
t1−α

2
(n − 1)

) σ̂√
n
, θ̂U = X̄ +

(
t1−α

2
(n − 1)

) σ̂√
n

I P
(
(θ̂L, θ̂U) 3 µ

)
= 1− α, since P

(
θ̂L ≥ µ

)
= α/2 and

P
(
θ̂U ≥ µ

)
= 1− α/2.



3.1.2 Confidence Interval: to estimate µ
Consider rv X with µ = E (X ), and a random sample

{
X1, . . . ,Xn

}
from the population.
Setting 3. X ∼ F (x ; θ) with θ = µ, the population mean. To
estimate θ = µ when n >> 1.

I Point Estimator. µ̂ = X̄ with “good” properties:
I E (X̄ ) = µ; V (X̄ ) = σ2

n ;

I By the CLT, X̄ ∼ N(µ, σ
2

n ) approximately.

I 1− α Confidence Interval.
I an approximate CI of (1− α) level when σ2 is known:

X̄ ± z1−α
2

√
σ2

n

becasue X̄−µ√
σ2/n

∼ N(0, 1) approximately.

I an approximate CI of (1− α) level when σ2 is unknown:

X̄ ± t1−α
2

√
S2

n
≈ X̄ ± z1−α

2

√
S2

n

becasue X̄−µ√
S2/n
∼ t(n − 1) approximately, close to N(0, 1) if

n >> 1.



Example. r.v. X ∼ Bernoulli(p): X =

{
1
0,

with P(X = 1) = p.

To estimate p with a random sample
{
X1, . . . ,Xn

}
when n >> 1.

I Firstly, µ = E (X ) = p and σ2 = V (X ) = p(1− p).

I Thus, a point estimator of p: p̂ = X̄ = 1
n

∑n
i=1 Xi .

I Because n >> 1, an approximate 1− α CI of p:

p̂ ± z1−α
2

√
S2

n ,

similar to p̂ ± z1−α
2

√
p̂(1−p̂)

n ,

since S2 = 1
n−1

(∑
X 2
i − nX̄ 2

)
= n

n−1 p̂(1− p̂) ≈ p̂(1− p̂)



Example 3.2 From a sample of 1250 BC voters, 420 of them
indicate that they support the NDP. Obtain an approximate 95%
CI for the proportion of BC voters who support the NDP. [(.310,
.362)]

I Population: r.v. X=1 or 0 to indicate a vote for NDP in BC.
X ∼ (1, p).

I Random sample: iid r.v.s X1,X2, . . . ,X1250 (votes from BC).
with X̄obs = x̄ = 420/1250 (p̂).

I 95% Confidence Interval of θ = µ = E (X ) = p:

θ̂L = x̄ − 1.96
s√

1250
, θ̂U = x̄ + 1.96

s√
1250

s2 = n
n−1 p̂(1− p̂) ≈ p̂(1− p̂) = 0.223 =⇒ an approximate 95%

CI: (.310, .362).



Remarks:

I The result is usually reported in news as
“33.5%± 2.6% support for NDP”

I An alternative solution:

I Y=# of NDP supporters out of 1250 BC voters
∼ Bin(1250, p), approximately N(1250p, 1250p(1− p)).

I Z = Y−1250p√
1250p(1−p)

=
Y

1250−p√
p(1−p)/1250

∼ N(0, 1) approximately.

So, an approximate 95% CI of p is
Y

1250 ± (1.96)
√
p̂(1− p̂)/1250 = .336± .026.

p̂ = Y
1250 = X̄



3.1.2 Confidence Interval: to estimate other
population parameter

Consider the following topics:

I How to estimate σ2 = Var(X )?

I How to estimate µX −µY for the two populations, say, X ,Y ?

I How about to estimate θ when X ∼ F (x ; θ) in general?
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