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3.1 Elementary Statistical Inferences
3.1.1 Sampling and Statistics

In the information age, statistics are everywhere, since
» data are everywhere, and

» always resources are limited and our observation abilities are
limited.

Various statistical methods.

» to efficiently collect meaningful and sufficient information:
Survey Sampling and Experimental Design

> to process the available information by tabulating/plotting the
data: Descriptive Analysis

> to make inference about the target population, beyond what
the information is directly on: Inferential Analysis

Plus Probability and Distribution: inferential reasoning with
probability theory



3.1.1 Samplm% and Statistics

Consider rv X , the population distn:

> A sample on X with size n: rvs Xi,..., X,
its observations xi, ..., x, from a study are realizations of the
sample.

> If Xi,..., X, are independent and identically distributed (iid) with
the same distn F(-), the sample {Xi,...,X,} is a random sample
on X with size n.

> A function of Xy,...,X,, say, T = T(Xy,...,X,), is called a
statistic.

» A statistic that is used to estimate a population parameter 6 is
called a point estimator of 6.

Definition. Let Xj,..., X, be a sample on rv X ~ F(x; ). A statistic
T = T(Xi,...,Xp) is an unbiased estimator of 0 if E(T) = 6.

Is X a “good” (point) estimator of u? How to obtain a “good”
estimator for @ in general?



3.1.1 Sampling and Statistics: Two Commonly Used

Point Estimation Procedures
A. Method of Moments Estimation (MME)

Thinking ... Recall sample mean X to estimate population mean .
Extend the idea to estimating kth population moment, with k =1,2,...7

Point estimation of population moments:
Suppose X ~ F(+;01,...,0mn) and iid observations Xi, ..., X,.

» kth population moment of X: yu, = E(X¥)
> kth sample moment with Xi,..., X;:

1(X{‘+...+Xnk)

fie = =
n

» Use [ix to estimate py! (unbaised estimator)

eg, o = E(X?) is estimated by

1
fio =~ (X + .+ X7).



Further, what if X ~ F(+;01,...,0,) with 0;,...,0,, not all population
moments? For example, X ~ N(u,02): 601 = u; 02 = 0. How to
estimate ;1 and o2 ?
Recall that

po = E(X?) = 0%+ 2 =0, + 62

How about use the following?

[i1 = X to estimate pu1 =
[io to estimate 02 + 2

If so, then

= Jio — X? to estimate o2



3.1.1 Sampling and Statistics: Method of Moments
Estimation (MME)

MM Estimation Procedure:
» Xi,...,X, are iid observations from the population
X~ F(501,...,0m).
» Denote the kth population mean py by px = px(01,...,0m)
with k=1,2,....
» The MM estimators 0A1, ...,0,, are the solution to the
equations jointly:

A

ﬁl:,ul(el,...,em);...;ﬁm:,um(el,...,em)

Revisit to the example of estimating 1 and 2 with X ~ N(u,0?):

X=u N o A ~ c
Solve < . ’ , and obta =X, ¢2=1[p— X2
v {M2=U2+M2 n in [ 0% =l

Are all MM estimators good? Is there any alternative estimation
procedure?



3.1.1 Sampling and Statistics: B. Maximum
Likelihood Estimation (MLE)
by R.A. Fisher (geneticist and statistician), 1920
Likelihood Function:
> Let the joint distribution (pmf, or pdf ) of rvs Xi,..., X, be
(X1, s Xn 61,y 0m).
When xi, ..., x, are the observed values (realizations) of the
rvs, the likelihood function of 64,...,60,, given the data is

L(Ql,...,9m| data):f(xl,...,x,,;el,...,em)

> interpretation: a measure on how likely the observed sample
is overall with the values of 01,...,0,,.

» Often Xi,..., X, are iid observations (a random sample) from
the population with distribution f(x; ). If the observed values
are xi,...,Xp, then the likelihood function is

L(0] data ) = ﬁf(x,-;ﬁ) =f(x1;0)...f(xn; 0).
i=1



Maximum Likelihood Estimator (MLE):

» The MLE él, ...,0, are the values of #4,...,60,, that
maximize the likelihood function:

L(A,...,0, | data)=maxL(fy,...,0, | data).

~

> interpretation: The MLE 01,....0m give the parameter
values that agree most closely with the observed sample (the
data).

» Often used procedures: (Why?)

(1) to maximize log L(61,...,6m)
(2) to obtain the solution to

OInL(01....0m) _ g
0m =



For example, iid X1, ..., X100 ~ N(u,0?) with observed values

X1,...,Xx100. The likelihood function of i, o is
100 1
L(p, 0%|data) = exp — p)?
ikt }
100

l0g L (1, 0%|data) = > { log (\/12?) ~ % 08(e%) - -1

i=1

dlog L(u,02 100
Oga;(fg ) = E,‘:l Tiz (xi — ,U)} =
dlog L(p,02 100
ogacféLU ) _ Zi:l — —2(172 + 72(;2)2 (x;i — N)Q} =0

Thus the MLE of 1,02 are i = X,52 = S0, (X; — X)2/n.



Why MLE?

Large Sample Behavior of MLE 0:
With a random sample of size n, as n — oo

» E(0,) — 0: approximately unbiased
» Var(f,) — 0*2 = min Var(f) with unbiased
» The distribution of d, is approximately N(0, o*?)

Remarks: MLE is widely used, because

» given the underlying population distribution, it is mechanically
derived by calculus-based techniques

» is almost the best estimator that can be attained,

> is convenient to use to make statistical inferences.



3.1.2 Confidence Interval

Goal: Suppose X ~ F(-;0) and Xi,..., X, iid observations from
the population. To obtain a ‘good’ interval estimator of 67

Definition. §; and GAU are two statistics. The random interval
(0.,0y) is a 100(1 — @)% confidence interval (Cl) of 6 is

P(0 € (A,0u)) = 100(1 — @)%.

Here, (1 — «) is called the confidence level of the Cl.

» eg, a = 0.05, a 100(1 — @)% ClI of # is a Cl with confidence
level of 95%.



3.1.2 Confidence Interval

> Interpretation. (frequentist)
With 100 experiments’ outcomes, there're at least 100(1 — «)
out of the 100 Cl realizations containing the true value of 6.

Bayesian interpretation: different!

» Confidence Level, Precision, and Sample Size:
» 100(1 — @)% CI (A;,0y): the confidence level is 1 — .

P(0€ (é[_,éu)) =1—«

> Length (Width) of Cl: 8y — d;, about Cl's
precision/accuracy.

» Often to determine the sample size n such that a 1 — « Cl has
a desired precision = Study Design



Example 3.1

» Study: To determine the true average response time of a new
operating system. What sample size is necessary to ensure the
resulting 95% Cl has a width of (at most) 10? Assume
o =25.

» Stats formulation: Assuming a response time X ~ N(u, o?)
with o = 25. To obtain a 95% Cl of x with length < 10

> Interval estimator: (X — 1. 96\2}, X +1. 96\2})

» Sample size determination: The length 2(1.96)(25/+/n) is to
be at most 10:

2(1.96)(25/+/n) < 10.

Thus /n > 2(1.96)(25)/10 = 9.80. So, n should be at least
97 (9.80% = 96.04).

Deriving a Cl: a general procedure
to find 6, = I(Xq,...,X,) and 8y = u(Xq,...,X,) to satisfy

P(I(X17...,Xn)<0<U(X]_,...,Xn)):l—a

How? not easy! See a few examples. ...



3.1.2 Confidence Interval: to estimate y
Consider rv X with = E(X), and a random sample {X1,..., X}
from the population.
Setting 1. X ~ N(u,02) with o known.

» Point Estimator. § = X = l(X1 4+ 4 X,,): with the

n
following “good” properties

» E(X) = p, unbiased

» V(X) = ‘772 converging to zero as n — 0o
= 2
> X~ N(p, %)

> P((éL,éu) > M) = 95%,
since P(éL > p1) = 2.5% and P(GAU > p) = 97.5%.
» for a general a?



3.1.2 Confidence Interval: to estimate y
Consider rv X with 4 = E(X), and a random sample {X, ...

from the population.
Setting 2. X ~ N(u,0?) with o2 unknown.
» Point Estimator. /i = X with “Good" properties:
» E(X) = V(X) = %5 X~ N, %)
How about the unknown ¢2?

1 _
~2 2 w2
a_s_n_1§(x, X)

» E(S?) = 0?; distn of 527
Proposition. (1) ("_0712)52 ~ x?(n—1). (2) S? and X are indpt. (3)
T = ;ﬁﬁ ~ t(n—1).

» Confidence Interval. (0;,0y) with

GAU = )_< + (tl_%(n — 1))

SE



3.1.2 Confidence Interval: to estimate y
Consider rv X with = E(X), and a random sample {Xl, ... ,X,,}
from the population.

Setting 3. X ~ F(x; ) with 6 = p, the population mean. To
estimate # = p when n >> 1.
» Point Estimator. /i = X with “good” properties:
> E(X) = V(X) =2
» By the CLT, X ~ N(u, . ) approximately.

» 1 — o Confidence Interval.

» an approximate Cl of (1 — «) level when o2 is known:

2

= g
X+ Z1_«
2 n

becasue —X=L ~ N(0, 1) approximately.
\/m ( ) pp y

» an approximate Cl of (1 — «) level when o2 is unknown:

52 /s
"2V n
becasue X

\/ﬁ ~ t(n— 1) approximately, close to N(0, 1) if

N\a




Example. r.v. X ~ Bernoulli(p): X = { é with P(X =1) = p.

To estimate p with a random sample {Xi,...,X,} when n >> 1.

» Firstly, u = E(X) = p and 02 = V(X) = p(1 — p).
» Thus, a point estimator of p: p = X =

1
n
» Because n >> 1, an approximate 1 — « Cl of p:
2

pEtzi_gy/ 2=,
p(1-p)
n

since §2 = ;L1 (0 X? — nX?) = L2:5(1 - p) ~ p(1 — )

similar to p + 7-g




Example 3.2 From a sample of 1250 BC voters, 420 of them
indicate that they support the NDP. Obtain an approximate 95%
Cl for the proportion of BC voters who support the NDP. [(.310,
.362)]

» Population: r.v. X=1 or 0 to indicate a vote for NDP in BC.
X ~(1,p).

» Random sample: iid r.v.s X1, Xa, ..., X1250 (votes from BC).
with Xops = X = 420,/1250 (p).

» 95% Confidence Interval of § = = E(X) = p:

N S ~ S
6, =x—1.96 , Qy=x+196
t 1250° V1250
2= _1-p(1—p)~ p(1— p) =0.223 = an approximate 95%

ST =
Cl: (.310,.362).



Remarks:
» The result is usually reported in news as
“33.5% + 2.6% support for NDP”

» An alternative solution:

» Y=+ of NDP supporters out of 1250 BC voters
~ Bin(1250, p), approximately N(1250p, 1250p(1 — p)).

v
Y—-1250p  _ 1250 _P N(O’ ]_) approximately.

> L= V/1250p(1—p)  +/p(1—p)/1250

So, an approximate 95% Cl of p is

s+ (1 96)/p(1 — p)/1250 = .336 + .026.

P = = X



3.1.2 Confidence Interval: to estimate other
population parameter

Consider the following topics:
» How to estimate 02 = Var(X)?
» How to estimate pux — py for the two populations, say, X, Y7?

» How about to estimate 6 when X ~ F(x;0) in general?



What will we study next?
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4. Further Topics, Selected from Chp 7-11
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