What to do today (Oct 21, 2020)?

1. Introduction
2. Probability and Distribution (Chp 1-3)
3. Essential Topics in Mathematical Statistics
3.1 Elementary Statistical Inferences (Chp 4)

- 3.1.1 Sampling and Statistics
- 3.1.2 Confidence Interval
- 3.1.3 Order Statistics
- 3.1.4 Hypothesis Testing
- 3.1.5 Statistical Simulation and Bootstrap
3.2 Consistency and Limiting Distributions (Chp 5)
3.3 Maximum Likelihood Methods (Chp 6)

Example 3.2 From a sample of 1250 BC voters, 420 of them indicate that they support the NDP. Obtain an approximate 95% Cl for the proportion of BC voters who support the NDP. [(.310, .362)]

- Population: r.v. $X=1$ or 0 to indicate a vote for NDP in BC. $X \sim(1, p)$.
- Random sample: iid r.v.s $X_{1}, X_{2}, \ldots, X_{1250}$ (votes from BC). with $\bar{X}_{o b s}=\bar{x}=420 / 1250(\hat{p})$.
- 95% Confidence Interval of $\theta=\mu=E(X)=p$:

$$
\hat{\theta}_{L}=\bar{x}-1.96 \frac{s}{\sqrt{1250}}, \quad \hat{\theta}_{U}=\bar{x}+1.96 \frac{s}{\sqrt{1250}}
$$

$s^{2}=\frac{n}{n-1} \hat{p}(1-\hat{p}) \approx \hat{p}(1-\hat{p})=0.223 \Longrightarrow$ an approximate 95%
$\mathrm{CI}:(.310, .362)$.

3.1.2 Confidence Interval: to estimate other population parameter

Consider the following topics:

- How to estimate $\sigma^{2}=\operatorname{Var}(X)$ in the population with disn $N\left(\mu, \sigma^{2}\right)$?
- How to estimate $\mu_{X}-\mu_{Y}$ for the two populations, say, X, Y ?
- How about to estimate θ when $X \sim F(x ; \theta)$ in general?

3.1.3 Order Statistics: Definition

Consider a collection of rvs X_{1}, \ldots, X_{n}.
Definition. The order statistics of the rvs are
$Y_{1}=\min \left(X_{1}, \ldots, X_{n}\right) \leq \ldots \leq Y_{n}=\max \left(X_{1}, \ldots, X_{n}\right)$, often denoted by $X_{(1)}, \ldots, X_{(n)}$.

Definition. If $X_{1}=Y_{R_{1}}=X_{\left(R_{1}\right)}, \ldots, X_{n}=Y_{R_{n}}=X_{\left(R_{n}\right)}$, R_{1}, \ldots, R_{n} are the ranks of X_{1}, \ldots, X_{n} in the collection.
eg, if X_{1}, X_{2}, X_{3} 's obsns are $x_{1}=2.3, x_{2}=5.9, x_{3}=1.1$,

- the obsn of the order statistics are

$$
x_{(1)}=y_{1}=1.1, x_{(3)}=y_{2}=2.3, x_{(3)}=y_{3}=5.9
$$

- the obsn of the rank statistics are $r_{1}=2, r_{2}=3, r_{3}=1$.

3.1.3 Order Statistics: Property

Consider a random sample X_{1}, \ldots, X_{n} from a population with cdf $F(x)$.

- What're the distn of $Y_{1}=X_{(1)}=\min \left(X_{1}, \ldots, X_{n}\right)$ and $Y_{n}=X_{(n)}=\max \left(X_{1}, \ldots, X_{n}\right) ?$

$$
\begin{gathered}
P\left(Y_{n} \leq y\right)=P\left(X_{1} \leq y, \ldots, X_{n} \leq y\right)=F(y)^{n} \\
P\left(Y_{1} \leq y\right)=1-P\left(X_{1}>y, \ldots, X_{n}>y\right)=1-[1-F(y)]^{n}
\end{gathered}
$$

- When the population distn is continuous with pdf $f(x)$:

Theorem. The joint pdf of its order statistics Y_{1}, \ldots, Y_{n} is

$$
g\left(y_{1}, \ldots, y_{n}\right)= \begin{cases}n!\prod_{i=1}^{n} f\left(y_{i}\right) & 0<y_{1} \leq \ldots \leq y_{n} \\ 0 & \text { elsewhere }\end{cases}
$$

For example, if $f(x)=1$ for $0<x<1$, the pdf of the range $Y_{n}-Y_{1}$ with $n=3$ is $h(z)=6 z(1-z)$ for $0<z<1$.

3.1.3 Order Statistics: Related

Consider a random sample X_{1}, \ldots, X_{n} from a population with cdf $F(x)$.
Definition. The population p quantile of $F(x)$ is $\xi_{p}=F^{-1}(p)$ for $0<p<1$.
Definition. The sample p quantile of the random sample is $X_{(k)}$ if $k=\lfloor p(n+1)\rfloor$, the largest integer that not larger than $p(n+1)$.

- If $p=0.5, \xi_{0.5}$ is the population median, and the sample median is often $X_{(.5(n+1))}$ if n 's odd and $\left\{X_{(.5 n+1)}+X_{(.5 n)}\right\} / 2$ if n 's even.
- $\xi_{0.25}$ and $\xi_{0.75}$ are the population 1st and 3rd quartiles, respectively; the sample quartiles $Q_{0}=X_{(1)}, Q_{1}=$ $X_{(.25(n+1))}, Q_{2}=X_{(.5(n+1))}, Q_{3}=X_{(.75(n+1))}, Q_{4}=X_{(n)}$ are often used to do the five-number summary.
- The population/sample p-quantile is often referred to as the 100 pth percentile of the population/sample.

3.1.4 Hypothesis Testing: Basic Setup

- Population. Suppose r.v. $X \sim F(\cdot ; \theta)$, where θ is an unknown parameter.
- Data (observations). Suppose X_{1}, \cdots, X_{n} are iid and arise from $F(\cdot ; \theta)$.
- Goal. To test on $H_{0}: \theta \in \Omega_{0}$ vs $H_{1}: \theta \in \Omega_{1}$ using the random sample. $\left(\Omega_{0} \bigcap \Omega_{1}=\emptyset\right)$

How to achieve the goal?
\Longrightarrow testing procedures for making an inference on the null hypothesis H_{0} vs the alternative hypothesis H_{1} ?

3.1.4 Hypothesis Testing: Basic Concepts

Let $\mathcal{D}=\left\{\right.$ all possible realizations of $\left.\left(X_{1}, \ldots, X_{n}\right)\right\}$.
Definition. Set $\mathcal{C} \subseteq \mathcal{D}$ is called the rejection region for a hypothesis test if the test's decision rule is as follows:

Reject $H_{0}\left(\right.$ Accept $\left.H_{1}\right)$ if $\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{C}$; Acdept H_{0} (Reject H_{1}) if $\left(x_{1}, \ldots, x_{n}\right) \notin \mathcal{C}$.

- The Type I error of a test occurs if H_{0} is rejected when H_{0} is true; the Type II error of a test occurs if H_{0} is accepted when H_{1} is true.
- We say the rejection region \mathcal{C} is of size (or significance level) α if $\alpha=\max _{\theta \in \Omega_{0}} P_{\theta}\left\{\left(X_{1}, \ldots, X_{n}\right) \in \mathcal{C}\right\}$.
The power function of the test is $\operatorname{power}(\theta)=P_{\theta}\left\{\left(X_{1}, \ldots, X_{n}\right) \in \mathcal{C}\right\}$ for $\theta \in \Omega_{1}$.

3.1.4 Hypothesis Testing: Examples

Example 3.3 To test for a binomial proportion of success at size α : $X \sim B(1, \theta)$ with $H_{0}: \theta=\theta_{0}$ vs $H_{1}: \theta<\theta_{0}$, provided a random sample X_{1}, \ldots, X_{n}

Example 3.4 To test at $\alpha=.05$ on whether a six-face die is even by rolling it 60 times indptly with the outcomes

$$
\begin{array}{lcccccc}
\text { face } & 1 & 2 & 3 & 4 & 5 & 6 \\
\text { count } & 13 & 19 & 11 & 8 & 5 & 4
\end{array}
$$

What will we study next week?

1. Introduction
2. Probability and Distribution (Chp 1-3)
3. Important Topics in Mathematical Statistics (Chp 4-6)

- 3.1 Elementary Statistical Inferences
- 3.1.1 Sampling and Statistics
- 3.1.2 Confidence Interval
- 3.1.3 Order Statistics
- 3.1.4 Hypothesis Testing
- 3.1.5 Statistical Simulation and Bootstrap
- 3.2 Consistency and Limiting Distributions
- 3.3 Maximum Likelihood Methods

4. Further Topics, Selected from Chp 7-11
