What to do today (Oct 21, 2020)?

- 1. Introduction
- 2. Probability and Distribution (Chp 1-3)
- **3. Essential Topics in Mathematical Statistics 3.1 Elementary Statistical Inferences (Chp 4)**
 - 3.1.1 Sampling and Statistics
 - 3.1.2 Confidence Interval
 - 3.1.3 Order Statistics
 - 3.1.4 Hypothesis Testing
 - 3.1.5 Statistical Simulation and Bootstrap
- 3.2 Consistency and Limiting Distributions (Chp 5) 3.3 Maximum Likelihood Methods (Chp 6)

Example 3.2 From a sample of 1250 BC voters, 420 of them indicate that they support the NDP. Obtain an approximate 95% CI for the proportion of BC voters who support the NDP. [(.310, .362)]

- ▶ Population: r.v. X=1 or 0 to indicate a vote for NDP in BC. X ~ (1, p).
- ▶ Random sample: iid r.v.s $X_1, X_2, \ldots, X_{1250}$ (votes from BC). with $\bar{X}_{obs} = \bar{x} = 420/1250$ (\hat{p}).

▶ 95% Confidence Interval of $\theta = \mu = E(X) = p$:

$$\hat{\theta}_L = \bar{x} - 1.96 \frac{s}{\sqrt{1250}}, \ \ \hat{\theta}_U = \bar{x} + 1.96 \frac{s}{\sqrt{1250}}$$

 $s^2 = \frac{n}{n-1}\hat{\rho}(1-\hat{\rho}) \approx \hat{\rho}(1-\hat{\rho}) = 0.223 \Longrightarrow$ an approximate 95% CI: (.310, .362).

3.1.2 Confidence Interval: to estimate other population parameter

Consider the following topics:

How to estimate σ² = Var(X) in the population with disn N(μ, σ²)?

• How to estimate $\mu_X - \mu_Y$ for the two populations, say, X, Y?

• How about to estimate θ when $X \sim F(x; \theta)$ in general?

3.1.3 Order Statistics: Definition

Consider a collection of rvs X_1, \ldots, X_n .

Definition. The order statistics of the rvs are $Y_1 = \min(X_1, \ldots, X_n) \leq \ldots \leq Y_n = \max(X_1, \ldots, X_n)$, often denoted by $X_{(1)}, \ldots, X_{(n)}$.

Definition. If $X_1 = Y_{R_1} = X_{(R_1)}, \dots, X_n = Y_{R_n} = X_{(R_n)}, R_1, \dots, R_n$ are the ranks of X_1, \dots, X_n in the collection.

eg, if X_1, X_2, X_3 's obsns are $x_1 = 2.3, x_2 = 5.9, x_3 = 1.1$,

► the obsn of the order statistics are
$$x_{(1)} = y_1 = 1.1, x_{(3)} = y_2 = 2.3, x_{(3)} = y_3 = 5.9$$

• the obsn of the rank statistics are $r_1 = 2, r_2 = 3, r_3 = 1$.

3.1.3 Order Statistics: Property

Consider a random sample X_1, \ldots, X_n from a population with cdf F(x).

▶ What're the distn of
$$Y_1 = X_{(1)} = \min(X_1, ..., X_n)$$
 and
 $Y_n = X_{(n)} = \max(X_1, ..., X_n)$?
 $P(Y_n \le y) = P(X_1 \le y, ..., X_n \le y) = F(y)^n$
 $P(Y_1 \le y) = 1 - P(X_1 > y, ..., X_n > y) = 1 - [1 - F(y)]^n$

▶ When the population distn is continuous with pdf f(x): **Theorem.** The joint pdf of its order statistics Y_1, \ldots, Y_n is

$$g(y_1,\ldots,y_n) = \begin{cases} n! \prod_{i=1}^n f(y_i) & 0 < y_1 \leq \ldots \leq y_n \\ 0 & elsewhere. \end{cases}$$

For example, if f(x) = 1 for 0 < x < 1, the pdf of the *range* $Y_n - Y_1$ with n = 3 is h(z) = 6z(1 - z) for 0 < z < 1.

3.1.3 Order Statistics: Related

Consider a random sample X_1, \ldots, X_n from a population with cdf F(x).

Definition. The population p quantile of F(x) is $\xi_p = F^{-1}(p)$ for 0 .

Definition. The sample p quantile of the random sample is $X_{(k)}$ if $k = \lfloor p(n+1) \rfloor$, the largest integer that not larger than p(n+1).

- If p = 0.5, ξ_{0.5} is the population median, and the sample median is often X_{(.5(n+1))} if n's odd and {X_(.5n+1) + X_(.5n)}/2 if n's even.
- ► ξ_{0.25} and ξ_{0.75} are the population 1st and 3rd quartiles, respectively; the sample quartiles Q₀ = X₍₁₎, Q₁ = X_{(.25(n+1))}, Q₂ = X_{(.5(n+1))}, Q₃ = X_{(.75(n+1))}, Q₄ = X_(n) are often used to do the *five-number summary*.
- The population/sample p-quantile is often referred to as the 100pth percentile of the population/sample.

3.1.4 Hypothesis Testing: Basic Setup

- ▶ **Population.** Suppose r.v. $X \sim F(\cdot; \theta)$, where θ is an unknown *parameter*.
- Data (observations). Suppose X₁, · · · , X_n are iid and arise from F(·; θ).
- Goal. To test on H₀ : θ ∈ Ω₀ vs H₁ : θ ∈ Ω₁ using the random sample. (Ω₀ ∩ Ω₁ = Ø)

How to achieve the goal?

 \implies testing procedures for making an inference on **the null** hypothesis H_0 vs the alternative hypothesis H_1 ?

3.1.4 Hypothesis Testing: Basic Concepts

Let $\mathcal{D} = \{ all \text{ possible realizations of } (X_1, \ldots, X_n) \}.$

Definition. Set $C \subseteq D$ is called the **rejection region** for a hypothesis test if the test's decision rule is as follows:

Reject H_0 (Accept H_1) if $(x_1, \ldots, x_n) \in C$; Acdept H_0 (Reject H_1) if $(x_1, \ldots, x_n) \notin C$.

► The Type I error of a test occurs if H₀ is rejected when H₀ is true; the Type II error of a test occurs if H₀ is accepted when H₁ is true.

3.1.4 Hypothesis Testing: Examples Example 3.3 To test for a binomial proportion of success at size α : $X \sim B(1, \theta)$ with $H_0: \theta = \theta_0$ vs $H_1: \theta < \theta_0$, provided a random sample X_1, \dots, X_n

Example 3.4 To test at $\alpha = .05$ on whether a six-face die is even by rolling it 60 times indptly with the outcomes

face	1	2	3	4	5	6
count	13	19	11	8	5	4

What will we study next week?

- 1. Introduction
- 2. Probability and Distribution (Chp 1-3)

3. Important Topics in Mathematical Statistics (Chp 4-6)

- ► 3.1 Elementary Statistical Inferences
 - 3.1.1 Sampling and Statistics
 - ▶ 3.1.2 Confidence Interval
 - 3.1.3 Order Statistics
 - 3.1.4 Hypothesis Testing
 - 3.1.5 Statistical Simulation and Bootstrap
- ▶ 3.2 Consistency and Limiting Distributions
- 3.3 Maximum Likelihood Methods

4. Further Topics, Selected from Chp 7-11