What to do today (Oct 26, 2020)?

1. Introduction
2. Probability and Distribution (Chp 1-3)
3. Essential Topics in Mathematical Statistics
3.1 Elementary Statistical Inferences (Chp 4)

- 3.1.1 Sampling and Statistics
- 3.1.2 Confidence Interval
- 3.1.3 Order Statistics
- 3.1.4 Hypothesis Testing
- 3.1.5 Statistical Simulation and Bootstrap
3.2 Consistency and Limiting Distributions (Chp 5)
3.3 Maximum Likelihood Methods (Chp 6)

3.1.4 Hypothesis Testing: Basic Setup

- Population. Suppose r.v. $X \sim F(\cdot ; \theta)$, where θ is an unknown parameter.
- Data (observations). Suppose X_{1}, \cdots, X_{n} are iid and arise from $F(\cdot ; \theta)$.
- Goal. To test on $H_{0}: \theta \in \Omega_{0}$ vs $H_{1}: \theta \in \Omega_{1}$ using the random sample. $\left(\Omega_{0} \bigcap \Omega_{1}=\emptyset\right)$

How to achieve the goal?
\Longrightarrow testing procedures for making an inference on the null hypothesis H_{0} vs the alternative hypothesis H_{1} ?

3.1.4 Hypothesis Testing: Basic Concepts

Let $\mathcal{D}=\left\{\right.$ all possible realizations of $\left.\left(X_{1}, \ldots, X_{n}\right)\right\}$.
Definition. Set $\mathcal{C} \subseteq \mathcal{D}$ is called the rejection region for a hypothesis test if the test's decision rule is as follows:

Reject $H_{0}\left(\right.$ Accept $\left.H_{1}\right)$ if $\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{C}$; Acdept H_{0} (Reject H_{1}) if $\left(x_{1}, \ldots, x_{n}\right) \notin \mathcal{C}$.

- The Type I error of a test occurs if H_{0} is rejected when H_{0} is true; the Type II error of a test occurs if H_{0} is accepted when H_{1} is true.
- We say the rejection region \mathcal{C} is of size (or significance level) α if $\alpha=\max _{\theta \in \Omega_{0}} P_{\theta}\left\{\left(X_{1}, \ldots, X_{n}\right) \in \mathcal{C}\right\}$.
The power function of the test is $\operatorname{power}(\theta)=P_{\theta}\left\{\left(X_{1}, \ldots, X_{n}\right) \in \mathcal{C}\right\}$ for $\theta \in \Omega_{1}$.

3.1.4 Hypothesis Testing: Examples

Example 3.3 To test for a binomial proportion of success at size $\alpha: X \sim B(1, \theta)$ with $H_{0}: \theta=\theta_{0}$ vs $H_{1}: \theta<\theta_{0}$, provided a random sample X_{1}, \ldots, X_{n}

Approach 1. The decision rule should be "Reject H_{0} in favor of H_{1} if $\sum_{i=1}^{n} X_{i} \leq k$ " with k determined by $\alpha=P_{H_{0}}\left(\sum_{i=1}^{n} X_{i} \leq k\right)$.

Approach 2. Since $\theta=E(X), \bar{X}$ is a "good estimator" for it and with approximate distn $N\left(\theta, \frac{\theta(1-\theta)}{n}\right)$.

The decision rule should be "Reject H_{0} in favor of H_{1} if $T<c$ " with c determined by $\alpha=P_{H_{0}}(T<c)$:

$$
T=\left(\bar{X}-\theta_{0}\right) / \sqrt{\theta_{0}\left(1-\theta_{0}\right) / n}
$$

Example 3.4 To test at $\alpha=.05$ on whether a six-face die is even by rolling it 60 times indptly with the outcomes

face	1	2	3	4	5	6
count	13	19	11	8	5	4

Formulation:

- Population. r.v. $X=$ the number from a cast of the die: X is discrete with pmf $p(x)$ for $x=1, \ldots, 6$.
- Data (observations). Suppose X_{1}, \cdots, X_{60} are iid, from $p(\cdot)$, and with realizations given in the table above.
- Goal. To test on $H_{0}: p(x)=1 / 6$ for $x=1, \ldots, 6$ vs H_{1} : otherwise.

Example 3.5 A measure of suspended particles in $\mu \mathrm{g} / \mathrm{m}^{3}$ is used by the World Health Organization air quality monitoring project. Let X and Y be the measure in the city center of Melbourne and Houston, respectively. Suppose X and Y are indpt. Test $H_{0}: \mu_{X}=\mu_{Y}$ vs $\mu_{X}<\mu_{Y}$ at $\alpha=.05$ with $n=13$ observations from Melbourne and $m=16$ observations from Houston: $\bar{x}=72.9$ and $\bar{y}=81.7$, assuming $\sigma_{X}=25.6$ and $\sigma_{Y}=28.3$.

3.1.4 Hypothesis Testing: Comments

- In practice, $\alpha=0.05$ is often used to "protect" H_{0}, and 80% is a commonly used standard for a satisfactory power.
- Consider a hypothesis test with the test statistic T.

Instead of to construct a rejection region to "make a decision", a significance test includes the following:

- calculate the p-value as

$$
p=P_{H_{0}}\left(T \text { the same as } T_{o b s} \text { or leaning toward } H_{1} \text { morethanit }\right)
$$

- conclude based on the p-value: if p is smaller than a predetermined significance level α, there's strong evidence against H_{0}; otherwise, there's no strong evidence against H_{0} from the data.

3.1.4 Hypothesis Testing: Comments

- There is a duality between Cl of a population parameter θ and the hypothesis testing on $H_{0}: \theta=\theta_{0}$.
- Given that $\widehat{\theta}_{L}\left(X_{1}, \ldots, X_{n}\right)$ and $\widehat{\theta}_{U}\left(X_{1}, \ldots, X_{n}\right)$ are the lower and upper limits of a $95 \% \mathrm{CI}$ of θ, consider the rejection region

$$
\mathcal{C}=\left\{\left(x_{1}, \ldots, x_{n}\right): \theta_{0} \notin\left(\widehat{\theta}_{L}, \widehat{\theta}_{U}\right)\right\},
$$

which gives a test of size .05 .

- If the rejection region \mathcal{C} with size of .05 can be presented as $\mathcal{C}=\left\{\left(x_{1}, \ldots, x_{n}\right): \theta_{0} \notin\left(\widehat{\theta}_{L}, \widehat{\theta}_{U}\right)\right\}$, the following interval is then a $95 \% \mathrm{Cl}$ for θ :

$$
\left(\widehat{\theta}_{L}\left(X_{1}, \ldots, X_{n}\right), \widehat{\theta}_{U}\left(X_{1}, \ldots, X_{n}\right)\right)
$$

3.1 Elementary Statistical Inferences (Chp 4)

What do we care about a random variable X ?
Its distribution: its pattern of taking different values, that is, what values X takes and how often it takes a particular value.

How do we find out X 's distribution from its observations (data: $\left.x_{1}, \ldots, x_{n}\right)$?

- (i) by descriptive analysis: plotting/tabulating the data; summarizing the data with statistics
- (ii) by making inference on X 's disnt $F(\cdot)$
(iia) to approximate (estimate) $F(\cdot)$ by point/interval estimation;
(iib) to choose between (test on) two contradictory claims about $F(\cdot)$ by hypothesis testing

How to verify a conclusion? How to assess performance of an inference procedure?

3.1.5 Statistical Simulation and Bootstrap: Monte Carlo Methods

- Monte Carlo refers to an area of Monaco, where the Monte Carlo Casino is located.
- Monte Carlo methods (or Monte Carlo experiments) are a class of computational algorithms that obtain numerical results by repeated random sampling.
- Monte Carlo methods are especially useful for simulating phenomena with significant uncertainty in inputs and random systems.

How does an Monte Carlo method work?

- How to simulate a particular system?
- After quantifying the system by a rv, how to simulate the rv?

3.1.5 Statistical Simulation and Bootstrap: Monte Carlo Generation

Uniform generator. eg the one in the software package R : "runif(n,min,max)"

```
x=runif(100);
hist(x, freq=FALSE, ... ...)
curve(dunif(x), col = 2, lty = 2, Iwd = 3, add = TRUE)
y=runif(100);
plot(x,y, xlab=x, ylab=y, pch=18, col=4, sub=(a2). n=100)
x=runif(1000);
hist(x, freq=FALSE, ... ...)
curve(dunif(x), col = 2, lty = 2, Iwd = 3, add = TRUE)
y=runif(1000);
plot(x,y, xlab=x, ylab=y, pch=18, col=4, sub=(b2). n=1000)
```


(a1). $n=100$

(b1). $\begin{aligned} & x=1000\end{aligned}$

3.1.5 Statistical Simulation and Bootstrap: Monte Carlo Generation

How to generate random variables?

- R has generators of most commonly used rvs: eg. "rnorm(n,mean,sd)"
- Use transformations of commonly used rvs: for example,

```
x=runif(1000);
w=3*x-1;
z=rnorm(1000);
v=3*z+5;
hist(x, freq=FALSE, ...)
curve(dunif(x), col = 2, Ity = 2, Iwd = 3, add = TRUE)
hist(w, freq=FALSE, ...)
lines(w, rep(1/3,1000), col = 3, Ity = 2, Iwd = 3)
hist(z, freq=FALSE, ...)
curve(exp(-x^2/2)/(2*pi)^.5, min(z),max(z),
    col = 4, Ity = 2, Iwd = 3, add = TRUE)
hist(v, freq=FALSE, ...)
curve(exp(-(x-5)^2/(2*9))/(2*pi*9)^.5, min(v),max(v),
    col = 5, Ity = 2, Iwd = 3, add = TRUE)
```


3.1.5 Statistical Simulation and Bootstrap: Monte Carlo Generation

How to generate random variables?

- Use transformations of commonly used rvs: for example,
- If given a cdf $F(\cdot), Y=F^{-1}(U)$ with $U \sim U(0,1)$ has

$$
Y \sim F(\cdot)
$$

```
ztmp=matrix (rnorm(4000), ncol=4)
b=apply (ztmp^2, 1 , sum)
x=runif(1000) ;
\(\mathrm{t}=-\log (1-\mathrm{x}) / 2\)
hist (b, freq=FALSE, ...)
lines (density (b), col \(=2\), \(\operatorname{lty}=2\), \(\operatorname{lwd}=3\) )
b2=rchisq (1000,df=4)
hist (b2, freq=FALSE, ...)
lines(density (b2), col \(=3\), Ity \(=2\), \(\operatorname{lwd}=3\) )
hist (t, freq=FALSE, ...)
lines(density (t), col \(=4\), lty \(=2\), \(\operatorname{lwd}=3\) )
\(\mathrm{t} 2=\mathrm{rexp}(1000,2)\)
hist(t2, freq=FALSE, ...)
lines(density (t2), col \(=5\), Ity \(=2\), \(\operatorname{lwd}=3\) )
```


3.1.5 Statistical Simulation and Bootstrap: Monte Carlo Generation

How to generate random variables?

- Accept-Reject Algorithm. If $f(\cdot)$ is a pdf and $f(x) \leq M g(x)$ with M a constant and $g(\cdot)$ the instrumental pdf.

Step 1. Generate $Y \sim g(\cdot)$ and $U \sim U(0,1)$ indptly.
Step 2. If $U \leq \frac{f(Y)}{[M g(Y)]}$, take $X=Y$ and go to Step 3; otherwise, return to Step 1.

Step 3. Obtain X, which follows $f(\cdot)$.

To prove it? (p298, the textbook by Hogg et al)

Example. Suppose $X \sim N(0,1)$ with pdf $f(x)=(2 \pi)^{-1 / 2} \exp \left(-x^{2} / 2\right)$, and $Y \sim \operatorname{Cauchy}(0,1)$ with pdf $g(y)=\pi^{-1}\left(1+x^{2}\right)^{-1}$.
Note that $f(x) \leq M g(x)$ with $M=\frac{\pi}{\sqrt{2 \pi}}(1.213)=1.520$.
Use the Accept-Reject Algorithm to generate 1000 observations from $N(0,1)$:

```
\(x<-\operatorname{rep}(0,1000)\)
for (i in 1:1000) \{
    \(y<-\) rcauchy ( 1, location \(=0\), scale \(=1)\);
    \(u<-r u n i f(1, \min =0, \max =1)\)
    while (u>(exp(-y^2/2)/(2*pi)^.5/1.520*pi*(1+y^2)))\{
    \(\mathrm{y}<-\) rcauchy ( 1 , location \(=0\), scale \(=1\) );
    \(u<-\operatorname{runif}(1, \min =0, \max =1)\)
\}
    \(x[i]<-y\)
\}
```


(a) Histogram and (b) QQNorm Plot of the generated 1000 observations from $N(0,1)$.

Monte Carlo Integration

How to calculate $\int_{a}^{b} g(x) d x$?
Example.

$$
\int_{0}^{2} \sqrt{4-x^{2}} d x=2 \int_{0}^{2} \sqrt{4-x^{2}}\left(\frac{1}{2}\right) d x=2 E\left\{\sqrt{4-X^{2}}\right\}
$$

provided that $X \sim U(0,2)$.

(b) Approximates to the integral by generating n observations from $U(0,2)$, with $n=10^{k}$ for $k=1, \ldots, 5$.

3.1.5 Statistical Simulation and Bootstrap: Simulation Example 1

To verify the normal approximation to binomial distn:

```
xtmp=matrix(ifelse(runif(1000*10)<.3,1,0), ncol=10)
x=apply(xtmp,1,sum)
hist(x, freq=FALSE, ...)
y=rbinom(n=1000, size=10,prob=0.3)
hist(y, freq=FALSE, breaks=11, ...)
xtmp=matrix(ifelse(runif(1000*100)<.3,1,0),ncol=100)
x=apply(xtmp,1,sum)
hist(x, freq=FALSE,breaks=20, ...)
curve(exp(-(x-30)^2/2/(30*.7))/(2*pi*21)^.5, 0, 100, lty=1, col=4,
    lwd=3, add=TRUE)
y=rbinom(n=1000, size=100,prob=0.3)
hist(y, freq=FALSE,breaks=20, ...)
curve(exp(-(x-30)^2/2/(30*.7))/(2*pi*21)^.5, 0, 100, Ity=1, col=4,
    lwd=3, add=TRUE)
```


(b2). $\mathrm{Y} \stackrel{\mathrm{y}}{\sim} \mathrm{B}(100,0.3)$

3.1.5 Statistical Simulation and Bootstrap: Simulation Example 2

What can data mssing result in?

```
x=runif(1000);
y=runif(1000);
w=ifelse (x<y, 1,0); sum(w)/1000
r0=ifelse(runif(1000)<.5,1,0)
x0=x[r0==1]; y 0=y [r0=1 ];
w0=ifelse (x0<y0,1,0); sum(w0)/sum(r0);
r1=rep (0,1000)
r1[x<y]=rbinom(length (x[x<y]), size=1,prob=.8)
r1[x>=y]=rbinom(length (x[x>=y]), size=1, prob=.2)
x 1=x[r 1==1 ] ; y 1=y [r 1==1];
w1=ifelse (x1<y1,1,0); sum(w1)/sum(r1);
r2=rep (0,1000)
r2[x<y]=rbinom(Iength (x[x<y]), size=1, prob=.3)
r2[x>=y]=rbinom(length (x[x>=y]), size=1, prob=.7)
x 2=x[r 2==1 ] ; y 2=y [ r 2==1];
w2=ifelse(x2<y2,1,0); sum(w2)/sum(r2);
```


(a).all obs: rate of ' $x<y$ ' $=.495$

x
(c).nonrandom missing 50% : rate of ' $x<y^{\prime}=.789$

X
(b). random missing 50% : rate of ' $x<y^{\prime}=.486$

(d).nonrandom missing 50% : rate of ' $x<y^{\prime}=.337$

What will we study next class?

1. Introduction
2. Probability and Distribution (Chp 1-3)
3. Important Topics in Mathematical Statistics (Chp 4-6)

- 3.1 Elementary Statistical Inferences
- 3.1.1 Sampling and Statistics
- 3.1.2 Confidence Interval
- 3.1.3 Order Statistics
- 3.1.4 Hypothesis Testing
- 3.1.5 Statistical Simulation and Bootstrap
- 3.2 Consistency and Limiting Distributions
- 3.3 Maximum Likelihood Methods

4. Further Topics, Selected from Chp 7-11
