What to do today (Oct 26, 2020)?

- 1. Introduction
- 2. Probability and Distribution (Chp 1-3)
- **3. Essential Topics in Mathematical Statistics 3.1 Elementary Statistical Inferences (Chp 4)**
 - 3.1.1 Sampling and Statistics
 - 3.1.2 Confidence Interval
 - 3.1.3 Order Statistics
 - 3.1.4 Hypothesis Testing
 - ► 3.1.5 Statistical Simulation and Bootstrap

3.2 Consistency and Limiting Distributions (Chp 5) 3.3 Maximum Likelihood Methods (Chp 6)

3.1.4 Hypothesis Testing: Basic Setup

- ▶ **Population.** Suppose r.v. $X \sim F(\cdot; \theta)$, where θ is an unknown *parameter*.
- Data (observations). Suppose X₁, · · · , X_n are iid and arise from F(·; θ).
- Goal. To test on H₀ : θ ∈ Ω₀ vs H₁ : θ ∈ Ω₁ using the random sample. (Ω₀ ∩ Ω₁ = Ø)

How to achieve the goal?

 \implies testing procedures for making an inference on **the null** hypothesis H_0 vs the alternative hypothesis H_1 ?

3.1.4 Hypothesis Testing: Basic Concepts

Let $\mathcal{D} = \{ all \text{ possible realizations of } (X_1, \ldots, X_n) \}.$

Definition. Set $C \subseteq D$ is called the **rejection region** for a hypothesis test if the test's decision rule is as follows:

Reject H_0 (Accept H_1) if $(x_1, \ldots, x_n) \in C$; Acdept H_0 (Reject H_1) if $(x_1, \ldots, x_n) \notin C$.

► The Type I error of a test occurs if H₀ is rejected when H₀ is true; the Type II error of a test occurs if H₀ is accepted when H₁ is true.

3.1.4 Hypothesis Testing: Examples

Example 3.3 To test for a binomial proportion of success at size α : $X \sim B(1, \theta)$ with $H_0: \theta = \theta_0$ vs $H_1: \theta < \theta_0$, provided a random sample X_1, \ldots, X_n

Approach 1. The decision rule should be "Reject H_0 in favor of H_1 if $\sum_{i=1}^n X_i \leq k$ " with k determined by $\alpha = P_{H_0}(\sum_{i=1}^n X_i \leq k)$.

Approach 2. Since $\theta = E(X)$, \bar{X} is a "good estimator" for it and with approximate distn $N(\theta, \frac{\theta(1-\theta)}{n})$.

The decision rule should be "Reject H_0 in favor of H_1 if T < c" with c determined by $\alpha = P_{H_0}(T < c)$:

$$T = (\bar{X} - heta_0) \big/ \sqrt{ heta_0 (1 - heta_0) / n}$$

Example 3.4 To test at $\alpha = .05$ on whether a six-face die is even by rolling it 60 times indptly with the outcomes

face	1	2	3	4	5	6
count	13	19	11	8	5	4

Formulation:

- Population. r.v. X = the number from a cast of the die: X is discrete with pmf p(x) for x = 1, ..., 6.
- ▶ **Data (observations).** Suppose X₁, ..., X₆₀ are iid, from p(·), and with realizations given in the table above.
- Goal. To test on $H_0: p(x) = 1/6$ for $x = 1, \ldots, 6$ vs $H_1:$ otherwise.

Example 3.5 A measure of suspended particles in $\mu g/m^3$ is used by the World Health Organization air quality monitoring project. Let X and Y be the measure in the city center of Melbourne and Houston, respectively. Suppose X and Y are indpt. Test $H_0: \mu_X = \mu_Y$ vs $\mu_x < \mu_Y$ at $\alpha = .05$ with n = 13 observations from Melbourne and m = 16 observations from Houston: $\bar{x} = 72.9$ and $\bar{y} = 81.7$, assuming $\sigma_X = 25.6$ and $\sigma_Y = 28.3$.

3.1.4 Hypothesis Testing: Comments

- In practice, α = 0.05 is often used to "protect" H₀, and 80% is a commonly used standard for a satisfactory power.
- Consider a hypothesis test with the test statistic *T*.

Instead of to construct a rejection region to "make a decision", a **significance test** includes the following:

calculate the p-value as

 $p = P_{H_0}(T \text{ the same as } T_{obs} \text{ or leaning toward } H_1 more than it);$

 conclude based on the p-value: if p is smaller than a predetermined significance level α, there's strong evidence against H₀; otherwise, there's no strong evidence against H₀ from the data.

3.1.4 Hypothesis Testing: Comments

- ► There is a *duality* between CI of a population parameter θ and the hypothesis testing on $H_0: \theta = \theta_0$.
 - Given that θ_L(X₁,...,X_n) and θ_U(X₁,...,X_n) are the lower and upper limits of a 95% Cl of θ, consider the rejection region

$$C = \{(x_1,\ldots,x_n): \theta_0 \notin (\widehat{\theta}_L,\widehat{\theta}_U)\},\$$

which gives a test of size .05.

If the rejection region C with size of .05 can be presented as C = {(x₁,...,x_n) : θ₀ ∉ (θ_L, θ_U)}, the following interval is then a 95% CI for θ:

$$(\widehat{\theta}_L(X_1,\ldots,X_n),\widehat{\theta}_U(X_1,\ldots,X_n))$$

3.1 Elementary Statistical Inferences (Chp 4)

What do we care about a random variable X?

Its **distribution**: its pattern of taking different values, that is, what values X takes and how often it takes a particular value.

How do we find out X's distribution from its observations (data: x_1, \ldots, x_n)?

- (i) by descriptive analysis: plotting/tabulating the data; summarizing the data with statistics
- (ii) by making inference on X's disnt $F(\cdot)$

(iia) to approximate (estimate) $F(\cdot)$ by point/interval estimation; (iib) to choose between (test on) two contradictory claims about $F(\cdot)$ by hypothesis testing

How to verify a conclusion? How to assess performance of an inference procedure?

3.1.5 Statistical Simulation and Bootstrap: Monte Carlo Methods

- ► Monte Carlo refers to an area of Monaco, where the *Monte Carlo Casino* is located.
- Monte Carlo methods (or Monte Carlo experiments) are a class of computational algorithms that obtain numerical results by repeated random sampling.
- Monte Carlo methods are especially useful for simulating phenomena with significant uncertainty in inputs and random systems.

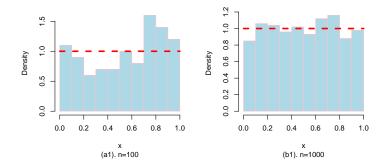
How does an Monte Carlo method work?

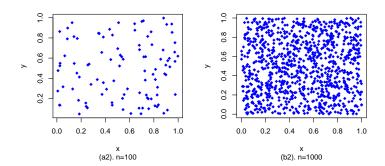
- How to simulate a particular system?
- After quantifying the system by a rv, how to simulate the rv?

3.1.5 Statistical Simulation and Bootstrap: Monte Carlo Generation

Uniform generator. eg the one in the software package *R*: "runif(n,min,max)"

```
x=runif(100);
hist(x, freq=FALSE, ... ...)
curve(dunif(x), col = 2, lty = 2, lwd = 3, add = TRUE)
y=runif(100);
plot(x,y, xlab=x, ylab=y, pch=18, col=4, sub=(a2). n=100)
x=runif(1000);
hist(x, freq=FALSE, ... ...)
curve(dunif(x), col = 2, lty = 2, lwd = 3, add = TRUE)
y=runif(1000);
plot(x,y, xlab=x, ylab=y, pch=18, col=4, sub=(b2). n=1000)
```

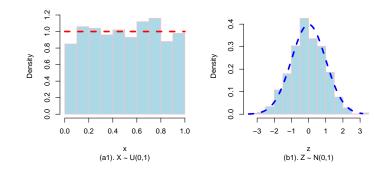


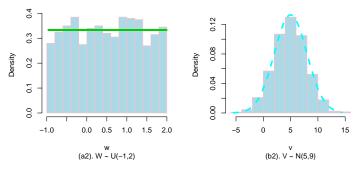


3.1.5 Statistical Simulation and Bootstrap: Monte Carlo Generation

How to generate random variables?

- R has generators of most commonly used rvs: eg. "rnorm(n,mean,sd)"
- Use transformations of commonly used rvs: for example,



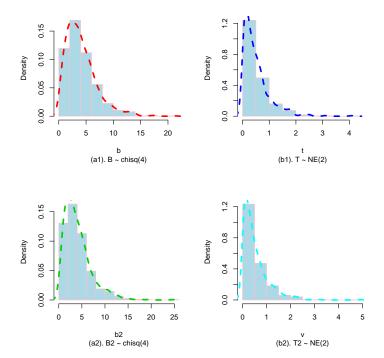


3.1.5 Statistical Simulation and Bootstrap: Monte Carlo Generation

How to generate random variables?

- ► Use transformations of commonly used rvs: for example,
 - If given a cdf $F(\cdot)$, $Y = F^{-1}(U)$ with $U \sim U(0,1)$ has $Y \sim F(\cdot)$

```
ztmp=matrix(rnorm(4000),ncol=4)
b=apply(ztmp^2,1,sum)
x=runif(1000);
t=-log(1-x)/2
hist(b, freq=FALSE, ...)
lines(density(b), col = 2, lty = 2, lwd = 3)
b2=rchisq(1000,df=4)
hist(b2, freq=FALSE, ...)
lines(density(b2), col = 3, lty = 2, lwd = 3)
hist(t, freq=FALSE, ...)
lines(density(t), col = 4, lty = 2, lwd = 3)
t2=rexp(1000,2)
hist(t2, freq=FALSE, ...)
lines(density(t2), col = 5, lty = 2, lwd = 3)
```



3.1.5 Statistical Simulation and Bootstrap: Monte Carlo Generation

How to generate random variables?

► Accept-Reject Algorithm. If f(·) is a pdf and f(x) ≤ Mg(x) with M a constant and g(·) the instrumental pdf.

Step 1. Generate $Y \sim g(\cdot)$ and $U \sim U(0,1)$ indptly.

Step 2. If $U \leq \frac{f(Y)}{[Mg(Y)]}$, take X = Y and go to Step 3; otherwise, return to Step 1.

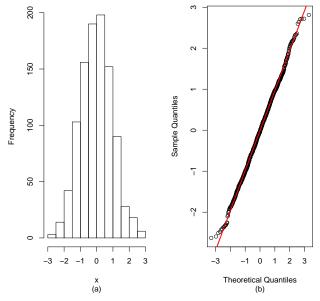
Step 3. Obtain X, which follows $f(\cdot)$.

To prove it? (p298, the textbook by Hogg et al)

Example. Suppose $X \sim N(0, 1)$ with pdf $f(x) = (2\pi)^{-1/2} \exp(-x^2/2)$, and $Y \sim Cauchy(0, 1)$ with pdf $g(y) = \pi^{-1}(1 + x^2)^{-1}$. Note that $f(x) \leq Mg(x)$ with $M = \frac{\pi}{\sqrt{2\pi}}(1.213) = 1.520$.

Use the Accept-Reject Algorithm to generate 1000 observations from N(0,1):

```
x<-rep(0,1000)
for(i in 1:1000){
    y<-rcauchy(1, location = 0, scale = 1);
    u<-runif(1, min=0, max=1)
    while(u>(exp(-y^2/2)/(2*pi)^.5/1.520*pi*(1+y^2))){
        y<-rcauchy(1, location = 0, scale = 1);
        u<-runif(1, min=0, max=1)
    }
    x[i]<-y
}</pre>
```



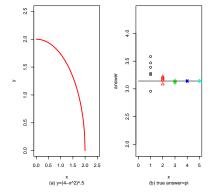
(a) Histogram and (b) QQNorm Plot of the generated 1000 observations from N(0, 1).

Monte Carlo Integration

How to calculate $\int_a^{\mathcal{B}} g(x) dx$? Example.

$$\int_{0}^{2} \sqrt{4 - x^{2}} dx = 2 \int_{0}^{2} \sqrt{4 - x^{2}} \left(\frac{1}{2}\right) dx = 2E \left\{\sqrt{4 - X^{2}}\right\} (\pi)$$

provided that $X \sim U(0,2)$.

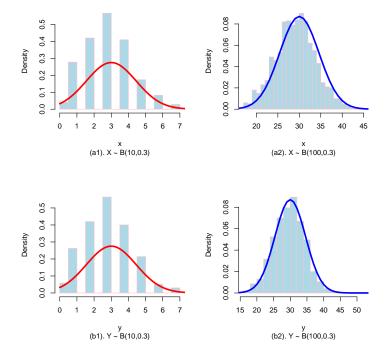


(b) Approximates to the integral by generating *n* observations from U(0,2), with $n = 10^k$ for k = 1, ..., 5.

3.1.5 Statistical Simulation and Bootstrap: Simulation Example 1

To verify the normal approximation to binomial distn:

```
xtmp=matrix(ifelse(runif(1000*10)<.3,1,0),ncol=10)
x = apply(xtmp, 1, sum)
hist(x, freq=FALSE, ...)
y=rbinom (n=1000, size=10, prob=0.3)
hist(y, freq=FALSE, breaks=11, ...)
xtmp=matrix(ifelse(runif(1000*100)<.3,1,0),ncol=100)
x = a p p l y (xtmp, 1, sum)
hist(x, freg=FALSE, breaks=20, ...)
curve(exp(-(x-30)^2/2/(30*.7))/(2*pi*21)^{.5}, 0, 100, |ty=1, col=4,
        lwd=3, add=TRUE)
y=rbinom (n=1000, size=100, prob=0.3)
hist(y, freq=FALSE, breaks=20, ...)
curve(exp(-(x-30)^2/2/(30*7))/(2*pi*21)^5, 0, 100, lty=1, col=4,
        Iwd=3, add=TRUE)
```

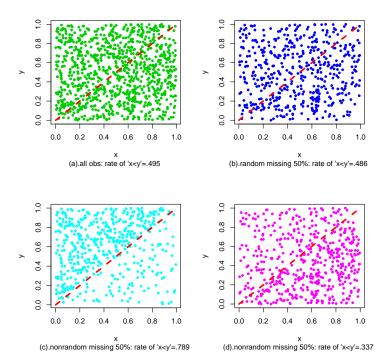


3.1.5 Statistical Simulation and Bootstrap: Simulation Example 2

What can data mssing result in?

```
x=runif(1000);
y=runif(1000);
w=ifelse(x<y,1,0); sum(w)/1000
r0=ifelse(runif(1000)<.5,1,0)
x0=x[r0=1];y0=y[r0=1];
w0=ifelse(x0<y0,1,0);sum(w0)/sum(r0);
r1=rep(0,1000)
r1[x<y]=rbinom(length(x[x<y]),size=1,prob=.8)
r1[x>=y]=rbinom(length(x[x>=y]),size=1,prob=.2)
x1=x[r1=1];y1=y[r1=1];
w1=ifelse(x1<y1,1,0);sum(w1)/sum(r1);</pre>
```

```
r2=rep(0,1000)
r2[x<y]=rbinom(length(x[x<y]), size=1, prob=.3)
r2[x>=y]=rbinom(length(x[x>=y]), size=1, prob=.7)
x2=x[r2=1]; y2=y[r2=1];
w2=ifelse(x2<y2,1,0); sum(w2)/sum(r2);</pre>
```



What will we study next class?

- 1. Introduction
- 2. Probability and Distribution (Chp 1-3)

3. Important Topics in Mathematical Statistics (Chp 4-6)

- ► 3.1 Elementary Statistical Inferences
 - 3.1.1 Sampling and Statistics
 - ▶ 3.1.2 Confidence Interval
 - 3.1.3 Order Statistics
 - ▶ 3.1.4 Hypothesis Testing
 - 3.1.5 Statistical Simulation and Bootstrap
- 3.2 Consistency and Limiting Distributions
- 3.3 Maximum Likelihood Methods
- 4. Further Topics, Selected from Chp 7-11