What to do today (Oct 26, 2020)?

1. Introduction
2. Probability and Distribution (Chp 1-3)

3. Essential Topics in Mathematical Statistics
3.1 Elementary Statistical Inferences (Chp 4)

» 3.1.1 Sampling and Statistics
3.1.2 Confidence Interval
3.1.3 Order Statistics

3.1.4 Hypothesis Testing
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v

v

» 3.1.5 Statistical Simulation and Bootstrap

3.2 Consistency and Limiting Distributions (Chp 5)
3.3 Maximum Likelihood Methods (Chp 6)
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3.1.4 Hypothesis Testing: Basic Setup

» Population. Suppose r.v. X ~ F(-;0), where 0 is an
unknown parameter.

» Data (observations). Suppose Xi,- -, X, are iid and arise
from F(-;0).

» Goal. To test on Hy : 0 € Qp vs Hy : 0 € Q1 using the
random sample. (201 = 0)

How to achieve the goal?

— testing procedures for making an inference on the null
hypothesis Hy vs the alternative hypothesis H;?



3.1.4 Hypothesis Testing: Basic Concepts
Let D = {all possible realizations of (Xi,...,Xp)}.

Definition. Set C C D is called the rejection region for a
hypothesis test if the test's decision rule is as follows:

Reject Hp (Accept Hy) if (x1,...,xn) €C;
Acdept Hy (Reject Hy) if (x1,...,xn) € C.

» The Type | error of a test occurs if Hy is rejected when Hy is
true; the Type Il error of a test occurs if Hy is accepted
when Hj is true.

» We say the rejection region C is of size (or significance level)
a if o = maxgeq, P@{(Xl, o, Xn) € C}.
The power function of the test is
power(0) = Pp{(X1,...,Xp) € C} for 6 € Q1.



3.1.4 Hypothesis Testing: Examples

Example 3.3 To test for a binomial proportion of success at size
a: X ~ B(1,0) with Hy : 0 = 6y vs Hy : 6 < 69, provided a
random sample Xi,..., X,

Approach 1. The decision rule should be “Reject Hy in favor of H;
if Y27 1 Xi < k" with k determined by oo = Py, (-7 Xi < k).

Approach 2. Since § = E(X), X is a “good estimator” for it and
001-0))
—).

with approximate distn N(6,

The decision rule should be “Reject Hy in favor of Hy if T < ¢”
with ¢ determined by a = Py (T < ¢):

T = ()_( — 60)/\/00(1 — 00)/”



Example 3.4 To test at & = .05 on whether a six-face die is even by
rolling it 60 times indptly with the outcomes

face 1 2 3

4 5 6
count 13 19 11 8 5 4

Formulation:
» Population. r.v. X = the number from a cast of the die: X is
discrete with pmf p(x) for x =1,...,6.

> Data (observations). Suppose Xi,--- , Xgo are iid, from p(-), and
with realizations given in the table above.

> Goal. Toteston Hp : p(x) =1/6 for x =1,...,6 vs Hy : otherwise.

Example 3.5 A measure of suspended particles in 1g/m? is used by the
World Health Organization air quality monitoring project. Let X and Y
be the measure in the city center of Melbourne and Houston, respectively.
Suppose X and Y are indpt. Test Hy : ux = py vs px < py at o = .05
with n = 13 observations from Melbourne and m = 16 observations from
Houston: X =72.9 and y = 81.7, assuming ox = 25.6 and oy = 28.3.



3.1.4 Hypothesis Testing: Comments

» In practice, & = 0.05 is often used to “protect” Hg, and 80%
is a commonly used standard for a satisfactory power.

» Consider a hypothesis test with the test statistic T.

Instead of to construct a rejection region to “make a
decision”, a significance test includes the following:

» calculate the p-value as

p = P, (T the same as Tops or leaning toward Hymorethanit);

» conclude based on the p-value: if p is smaller than a
predetermined significance level «, there's strong evidence
against Hp; otherwise, there's no strong evidence against Hy
from the data.



3.1.4 Hypothesis Testing: Comments

» There is a duality between Cl of a population parameter 6 and
the hypothesis testing on Hp : 0 = 6g.

> Given that 6,(Xy,...,X,) and Buy(Xt,.. ., X,) are the lower
and upper limits of a 95% Cl of 6, consider the rejection region

C={(x1- - x0) : 00 & (01, 00)}

which gives a test of size .05.

> If the rejection region C with size of .05 can be presented as
C= {(xl, ceyXn) 100 & (9L,9U)}, the following interval is
then a 95% Cl for 6:

(BL(X1, .., Xn), 0u(X,s ..., X))



3.1 Elementary Statistical Inferences (Chp 4)

What do we care about a random variable X?

Its distribution: its pattern of taking different values, that is, what
values X takes and how often it takes a particular value.

How do we find out X's distribution from its observations (data:
Xiy ooy Xn)?

> (i) by descriptive analysis: plotting/tabulating the data;
summarizing the data with statistics

» (i) by making inference on X's disnt F(+)

(iia) to approximate (estimate) F(-) by point/interval
estimation;

(iib) to choose between (test on) two contradictory claims
about F(-) by hypothesis testing

How to verify a conclusion? How to assess performance of an
inference procedure?



3.1.5 Statistical Simulation and Bootstrap: Monte
Carlo Methods

» Monte Carlo refers to an area of Monaco, where the Monte
Carlo Casino is located.

» Monte Carlo methods (or Monte Carlo experiments) are a
class of computational algorithms that obtain numerical
results by repeated random sampling.

» Monte Carlo methods are especially useful for simulating
phenomena with significant uncertainty in inputs and random
systems.

How does an Monte Carlo method work?
» How to simulate a particular system?

» After quantifying the system by a rv, how to simulate the rv?



3.1.5 Statistical Simulation and Bootstrap: Monte
Carlo Generation

Uniform generator. eg the one in the software package R:
“runif(n,min,max)"

x=runif(100);

hist(x, freq=FALSE, ... ...)

curve(dunif(x), col =2, Ity =2, lwd = 3, add = TRUE)
y=runif(100);

plot(x,y, xlab=x, ylab=y, pch=18, col=4, sub=(a2). n=100)
x=runif(1000);

hist(x, freq=FALSE, ... ...)

curve(dunif(x), col =2, Ity =2, lwd = 3, add = TRUE)
y=runif (1000);

plot(x,y, xlab=x, ylab=y, pch=18, col=4, sub=(b2). n=1000)
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3.1.5 Statistical Simulation and Bootstrap: Monte

Carlo Generation

How to generate random variables?

» R has generators of most commonly used rvs: eg.

“rnorm(n,mean,sd)"”

» Use transformations of commonly used rvs: for example,

x=runif(1000);

w=3x*x—1;

z=rnorm (1000);

v=3xz+5;

hist (x, freq=FALSE, ...)

curve(dunif(x), col =2, Ity

hist (w, freq=FALSE, ...)

lines (w,rep(1/3,1000), col =

hist(z, freq=FALSE, ...)

curve (exp(—x"2/2)/(2*pi)".5,
col = 4, lty

hist (v, freq=FALSE, .

)
curve (exp(—(x=5)"2/(2%9))/(2xpi*9)".5,
=5, Ity = 2,

col

2, lwd = 3, add = TRUE)
3, Ity =2, lwd = 3)

min(z),max(z),
=2, lwd = 3, add = TRUE)

min(v),max(v),
Ilwd = 3, add = TRUE)
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3.1.5 Statistical Simulation and Bootstrap: Monte
Carlo Generation

How to generate random variables?
» Use transformations of commonly used rvs: for example,

> If given a cdf F(:), Y = F~1(U) with U ~ U(0,1) has
Y ~ F(")

ztmp=matrix (rnorm (4000), ncol=4)

b=apply (ztmp~2,1,sum)

x=runif(1000);

t=1log(1-x)/2

hist(b, freq=FALSE, ...)

lines(density(b), col =2, Ity =2, lwd = 3)
b2=rchisq (1000, df=4)

hist (b2, freq=FALSE, ...)

lines(density(b2), col =3, Ity =2, lwd = 3)
hist(t, freq=FALSE, ...)

lines(density(t), col =4, Ity =2, lwd = 3)
t2=rexp(1000,2)

hist(t2, freq=FALSE, ...)

lines(density(t2), col =5, Ity =2, lwd = 3)
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3.1.5 Statistical Simulation and Bootstrap: Monte
Carlo Generation

How to generate random variables?

» Accept-Reject Algorithm. If f(-) is a pdf and f(x) < Mg(x)
with M a constant and g(+) the instrumental pdf.

Step 1. Generate Y ~ g(+) and U ~ U(0,1) indptly.

Step 2. If U < &)] take X = Y and go to Step 3;
otherwise, return to Step 1.

Step 3. Obtain X, which follows f().

To prove it? (p298, the textbook by Hogg et al)



Example. Suppose X ~ N(0, 1) with pdf
f(x) = (27) Y2 exp(—x?/2), and Y ~ Cauchy(0,1) with pdf
gly) =mH(1+x%)""

Note that f(x) < Mg(x) with M = —Z=(1.213) = 1.520.

Use the Accept-Reject Algorithm to generate 1000 observations
from N(0,1):

x<—rep(0,1000)

for(i in 1:1000){
y<—rcauchy(1l, location = 0, scale = 1);
u<—runif(l, min=0, max=1)
while (u>(exp(—y~2/2)/(2xpi)".5/1.520*pi*(1+y~2))){
y<—rcauchy (1, location = 0, scale = 1);
u<—runif(l, min=0, max=1)

x[i]l<—y
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Monte Carlo Integration
How to calculate [ g(x)dx?
Example.

/02 \/4—x2dx:2/02 \/4—x2(%)dx:2E{\/4—X2} (m)

provided that X ~ U(0,2).

T T T T T T T T T T
00 05 10 15 20 25 0 1 2 3 4 5

(@) y= (4X X2)N5 (b) tru e:nswe =pi
(b) Approximates to the integral by generating n observations from
U(0,2), with n = 10¥ for k =1,....5.



3.1.5 Statistical Simulation and Bootstrap:
Simulation Example 1

To verify the normal approximation to binomial distn:

xtmp=matrix(ifelse (runif(1000%x10)<.3,1,0),ncol=10)
x=apply (xtmp,1,sum)

hist(x, freq=FALSE, ...)
y=rbinom (n=1000, size=10, prob=0.3)
hist(y, freq=FALSE, breaks=11, ...)

xtmp=matrix(ifelse (runif(1000%100)<.3,1,0),ncol=100)

x=apply (xtmp,1,sum)

hist (x, freq=FALSE, breaks=20, ..

curve (exp(—(x=30)"2/2/(30=x. 7))/(2*p|*21) .5, 0, 100, Ity=1, col=4,
lwd=3, add=TRUE)

y=rbinom (n=1000,size=100, prob=0.3)

hist(y, freq=FALSE, breaks=20, ...

curve (exp(—(x=30)"2/2/(30%.7))/(2+pi*21)"~.5, 0, 100, lty=1, col=4,
lwd=3, add=TRUE)
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3.1.5 Statistical Simulation and Bootstrap:
Simulation Example 2

What can data mssing result in?

x=runif(1000);
y=runif(1000);
w=ifelse (x<y,1,0); sum(w)/1000

rO=ifelse(runif(1000)<.5,1,0)
x0=x[r0=1];y0=y[r0=1];
wO=ifelse (x0<y0,1,0);sum(w0)/sum(r0);

rl=rep(0,1000)
rl[x<y]=rbinom(length(x[x<y]),size=1,6prob=.8)
rl[x>=y]=rbinom(length(x[x>=y]),size=1l,prob=.2)
xl=x[r1l=1];yl=y[r1=1];

wl=ifelse (x1<yl,1,0);sum(wl)/sum(rl);

r2=rep(0,1000)

r2[x<y]=rbinom(length (x[x<y]), K size=l,prob=.3)
r2[x>=y]=rbinom(length (x[x>=y]), size=1,prob=.7)
x2=x[r2=1];y2=y[r2=1];

w2=ifelse (x2<y2,1,0);sum(w2)/sum(r2);
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What will we study next class?

1. Introduction
2. Probability and Distribution (Chp 1-3)

3. Important Topics in Mathematical Statistics (Chp
4-6)

» 3.1 Elementary Statistical Inferences

3.1.1 Sampling and Statistics

3.1.2 Confidence Interval

3.1.3 Order Statistics

3.1.4 Hypothesis Testing

3.1.5 Statistical Simulation and Bootstrap
» 3.2 Consistency and Limiting Distributions
» 3.3 Maximum Likelihood Methods
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4. Further Topics, Selected from Chp 7-11
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