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3.1.4 Hypothesis Testing: Basic Setup

I Population. Suppose r.v. X ∼ F (·; θ), where θ is an
unknown parameter.

I Data (observations). Suppose X1, · · · ,Xn are iid and arise
from F (·; θ).

I Goal. To test on H0 : θ ∈ Ω0 vs H1 : θ ∈ Ω1 using the
random sample. (Ω0

⋂
Ω1 = ∅)

How to achieve the goal?

=⇒ testing procedures for making an inference on the null
hypothesis H0 vs the alternative hypothesis H1?



3.1.4 Hypothesis Testing: Basic Concepts

Let D =
{
all possible realizations of (X1, . . . ,Xn)

}
.

Definition. Set C ⊆ D is called the rejection region for a
hypothesis test if the test’s decision rule is as follows:

Reject H0 (Accept H1) if (x1, . . . , xn) ∈ C;

Acdept H0 (Reject H1) if (x1, . . . , xn) 6∈ C.

I The Type I error of a test occurs if H0 is rejected when H0 is
true; the Type II error of a test occurs if H0 is accepted
when H1 is true.

I We say the rejection region C is of size (or significance level)
α if α = maxθ∈Ω0 Pθ

{
(X1, . . . ,Xn) ∈ C

}
.

The power function of the test is
power(θ) = Pθ

{
(X1, . . . ,Xn) ∈ C

}
for θ ∈ Ω1.



3.1.4 Hypothesis Testing: Examples

Example 3.3 To test for a binomial proportion of success at size
α: X ∼ B(1, θ) with H0 : θ = θ0 vs H1 : θ < θ0, provided a
random sample X1, . . . ,Xn

Approach 1. The decision rule should be “Reject H0 in favor of H1

if
∑n

i=1 Xi ≤ k” with k determined by α = PH0(
∑n

i=1 Xi ≤ k).

Approach 2. Since θ = E (X ), X̄ is a “good estimator” for it and

with approximate distn N(θ, θ(1−θ)
n ).

The decision rule should be “Reject H0 in favor of H1 if T < c”
with c determined by α = PH0(T < c):

T = (X̄ − θ0)
/√

θ0(1− θ0)/n



Example 3.4 To test at α = .05 on whether a six-face die is even by
rolling it 60 times indptly with the outcomes

face 1 2 3 4 5 6
count 13 19 11 8 5 4

Formulation:
I Population. r.v. X = the number from a cast of the die: X is

discrete with pmf p(x) for x = 1, . . . , 6.

I Data (observations). Suppose X1, · · · ,X60 are iid, from p(·), and
with realizations given in the table above.

I Goal. To test on H0 : p(x) = 1/6 for x = 1, . . . , 6 vs H1 : otherwise.

Example 3.5 A measure of suspended particles in µg/m3 is used by the

World Health Organization air quality monitoring project. Let X and Y

be the measure in the city center of Melbourne and Houston, respectively.

Suppose X and Y are indpt. Test H0 : µX = µY vs µx < µY at α = .05

with n = 13 observations from Melbourne and m = 16 observations from

Houston: x̄ = 72.9 and ȳ = 81.7, assuming σX = 25.6 and σY = 28.3.



3.1.4 Hypothesis Testing: Comments

I In practice, α = 0.05 is often used to “protect” H0, and 80%
is a commonly used standard for a satisfactory power.

I Consider a hypothesis test with the test statistic T .

Instead of to construct a rejection region to “make a
decision”, a significance test includes the following:

I calculate the p-value as

p = PH0 (T the same as Tobs or leaning toward H1morethanit);

I conclude based on the p-value: if p is smaller than a
predetermined significance level α, there’s strong evidence
against H0; otherwise, there’s no strong evidence against H0

from the data.



3.1.4 Hypothesis Testing: Comments

I There is a duality between CI of a population parameter θ and
the hypothesis testing on H0 : θ = θ0.

I Given that θ̂L(X1, . . . ,Xn) and θ̂U(X1, . . . ,Xn) are the lower
and upper limits of a 95% CI of θ, consider the rejection region

C =
{

(x1, . . . , xn) : θ0 6∈ (θ̂L, θ̂U)
}
,

which gives a test of size .05.

I If the rejection region C with size of .05 can be presented as
C =

{
(x1, . . . , xn) : θ0 6∈ (θ̂L, θ̂U)

}
, the following interval is

then a 95% CI for θ:

(θ̂L(X1, . . . ,Xn), θ̂U(X1, . . . ,Xn))



3.1 Elementary Statistical Inferences (Chp 4)
What do we care about a random variable X?

Its distribution: its pattern of taking different values, that is, what
values X takes and how often it takes a particular value.

How do we find out X ’s distribution from its observations (data:
x1, . . . , xn)?

I (i) by descriptive analysis: plotting/tabulating the data;
summarizing the data with statistics

I (ii) by making inference on X ’s disnt F (·)

(iia) to approximate (estimate) F (·) by point/interval
estimation;
(iib) to choose between (test on) two contradictory claims
about F (·) by hypothesis testing

How to verify a conclusion? How to assess performance of an
inference procedure?



3.1.5 Statistical Simulation and Bootstrap: Monte
Carlo Methods

I Monte Carlo refers to an area of Monaco, where the Monte
Carlo Casino is located.

I Monte Carlo methods (or Monte Carlo experiments) are a
class of computational algorithms that obtain numerical
results by repeated random sampling.

I Monte Carlo methods are especially useful for simulating
phenomena with significant uncertainty in inputs and random
systems.

How does an Monte Carlo method work?

I How to simulate a particular system?

I After quantifying the system by a rv, how to simulate the rv?



3.1.5 Statistical Simulation and Bootstrap: Monte
Carlo Generation

Uniform generator. eg the one in the software package R:
“runif(n,min,max)”

x=r u n i f ( 100 ) ;
h i s t ( x , f r e q=FALSE , . . . . . . )
c u r v e ( d u n i f ( x ) , c o l = 2 , l t y = 2 , lwd = 3 , add = TRUE)
y=r u n i f ( 100 ) ;
p l o t ( x , y , x l a b=x , y l a b=y , pch=18 , c o l=4 , sub=(a2 ) . n=100 )
x=r u n i f ( 1000 ) ;
h i s t ( x , f r e q=FALSE , . . . . . . )
c u r v e ( d u n i f ( x ) , c o l = 2 , l t y = 2 , lwd = 3 , add = TRUE)
y=r u n i f ( 1000 ) ;
p l o t ( x , y , x l a b=x , y l a b=y , pch=18 , c o l=4 , sub=(b2 ) . n=1000 )
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3.1.5 Statistical Simulation and Bootstrap: Monte
Carlo Generation

How to generate random variables?

I R has generators of most commonly used rvs: eg.
“rnorm(n,mean,sd)”

I Use transformations of commonly used rvs: for example,

x=r u n i f ( 1000 ) ;
w=3∗x−1 ;
z=rnorm ( 1000 ) ;
v=3∗ z+5 ;
h i s t ( x , f r e q=FALSE , . . . )
c u r v e ( d u n i f ( x ) , c o l = 2 , l t y = 2 , lwd = 3 , add = TRUE)
h i s t (w, f r e q=FALSE , . . . )
l i n e s (w, r e p ( 1/3 , 1000 ) , c o l = 3 , l t y = 2 , lwd = 3 )
h i s t ( z , f r e q=FALSE , . . . )
c u r v e ( exp(−x ˆ2/2 ) / ( 2∗ p i ) ˆ . 5 , min ( z ) , max ( z ) ,

c o l = 4 , l t y = 2 , lwd = 3 , add = TRUE)
h i s t ( v , f r e q=FALSE , . . . )
c u r v e ( exp (−(x−5 )ˆ 2 /( 2∗9 ) ) / ( 2∗ p i ∗9 ) ˆ . 5 , min ( v ) , max ( v ) ,

c o l = 5 , l t y = 2 , lwd = 3 , add = TRUE)
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3.1.5 Statistical Simulation and Bootstrap: Monte
Carlo Generation

How to generate random variables?
I Use transformations of commonly used rvs: for example,

I If given a cdf F (·), Y = F−1(U) with U ∼ U(0, 1) has
Y ∼ F (·)

ztmp=m a t r i x ( rnorm ( 4000 ) , n c o l=4 )
b=a p p l y ( ztmpˆ2 , 1 , sum )
x=r u n i f ( 1000 ) ;
t=−l o g ( 1−x )/ 2
h i s t ( b , f r e q=FALSE , . . . )
l i n e s ( d e n s i t y ( b ) , c o l = 2 , l t y = 2 , lwd = 3 )
b2=r c h i s q ( 1000 , d f=4 )
h i s t ( b2 , f r e q=FALSE , . . . )
l i n e s ( d e n s i t y ( b2 ) , c o l = 3 , l t y = 2 , lwd = 3 )
h i s t ( t , f r e q=FALSE , . . . )
l i n e s ( d e n s i t y ( t ) , c o l = 4 , l t y = 2 , lwd = 3 )
t 2=r e x p ( 1000 , 2 )
h i s t ( t 2 , f r e q=FALSE , . . . )
l i n e s ( d e n s i t y ( t 2 ) , c o l = 5 , l t y = 2 , lwd = 3 )
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3.1.5 Statistical Simulation and Bootstrap: Monte
Carlo Generation

How to generate random variables?

I Accept-Reject Algorithm. If f (·) is a pdf and f (x) ≤ Mg(x)
with M a constant and g(·) the instrumental pdf.

Step 1. Generate Y ∼ g(·) and U ∼ U(0, 1) indptly.

Step 2. If U ≤ f (Y )
[Mg(Y )] , take X = Y and go to Step 3;

otherwise, return to Step 1.

Step 3. Obtain X , which follows f (·).

To prove it? (p298, the textbook by Hogg et al)



Example. Suppose X ∼ N(0, 1) with pdf
f (x) = (2π)−1/2 exp(−x2/2), and Y ∼ Cauchy(0, 1) with pdf
g(y) = π−1(1 + x2)−1.
Note that f (x) ≤ Mg(x) with M = π√

2π
(1.213) = 1.520.

Use the Accept-Reject Algorithm to generate 1000 observations
from N(0,1):

x<−r e p ( 0 , 1000 )
f o r ( i i n 1 : 1000 ){

y<−r c a u c h y ( 1 , l o c a t i o n = 0 , s c a l e = 1 ) ;
u<−r u n i f ( 1 , min=0 , max=1 )
w h i l e ( u>(exp(−y ˆ2/2 ) / ( 2∗ p i ) ˆ . 5/1 . 520∗ p i ∗( 1+y ˆ2 ) ) ){
y<−r c a u c h y ( 1 , l o c a t i o n = 0 , s c a l e = 1 ) ;
u<−r u n i f ( 1 , min=0 , max=1 )

}
x [ i ]<−y

}
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Monte Carlo Integration
How to calculate

∫ b
a g(x)dx?

Example.∫ 2

0

√
4− x2dx = 2

∫ 2

0

√
4− x2

(1

2

)
dx = 2E

{√
4− X 2

}
(π)

provided that X ∼ U(0, 2).
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(b) Approximates to the integral by generating n observations from
U(0, 2), with n = 10k for k = 1, . . . , 5.



3.1.5 Statistical Simulation and Bootstrap:
Simulation Example 1

To verify the normal approximation to binomial distn:

xtmp=m a t r i x ( i f e l s e ( r u n i f ( 1000∗10 )<. 3 , 1 , 0 ) , n c o l=10 )
x=a p p l y ( xtmp , 1 , sum )
h i s t ( x , f r e q=FALSE , . . . )
y=rbinom ( n=1000 , s i z e=10 , prob=0 . 3 )
h i s t ( y , f r e q=FALSE , b r e a k s=11 , . . . )

xtmp=m a t r i x ( i f e l s e ( r u n i f ( 1000∗100 )<. 3 , 1 , 0 ) , n c o l=100 )
x=a p p l y ( xtmp , 1 , sum )
h i s t ( x , f r e q=FALSE , b r e a k s=20 , . . . )
c u r v e ( exp (−(x−30 )ˆ 2/2 /( 30 ∗ . 7 ) ) / ( 2∗ p i ∗21 ) ˆ . 5 , 0 , 100 , l t y=1 , c o l=4 ,

lwd=3 , add=TRUE)
y=rbinom ( n=1000 , s i z e=100 , prob=0 . 3 )
h i s t ( y , f r e q=FALSE , b r e a k s=20 , . . . )
c u r v e ( exp (−(x−30 )ˆ 2/2 /( 30 ∗ . 7 ) ) / ( 2∗ p i ∗21 ) ˆ . 5 , 0 , 100 , l t y=1 , c o l=4 ,

lwd=3 , add=TRUE)
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3.1.5 Statistical Simulation and Bootstrap:
Simulation Example 2

What can data mssing result in?

x=r u n i f ( 1000 ) ;
y=r u n i f ( 1000 ) ;
w= i f e l s e ( x<y , 1 , 0 ) ; sum (w)/ 1000

r 0= i f e l s e ( r u n i f ( 1000 )<. 5 , 1 , 0 )
x 0=x [ r 0==1 ] ; y 0=y [ r 0==1 ] ;
w0= i f e l s e ( x 0<y 0 , 1 , 0 ) ; sum (w0 )/ sum ( r 0 ) ;

r 1=r e p ( 0 , 1000 )
r 1 [ x<y ]= rbinom ( l e n g t h ( x [ x<y ] ) , s i z e=1 , prob =.8 )
r 1 [ x>=y]= rbinom ( l e n g t h ( x [ x>=y ] ) , s i z e=1 , prob =.2 )
x 1=x [ r 1==1 ] ; y 1=y [ r 1==1 ] ;
w1= i f e l s e ( x 1<y 1 , 1 , 0 ) ; sum (w1 )/ sum ( r 1 ) ;

r 2=r e p ( 0 , 1000 )
r 2 [ x<y ]= rbinom ( l e n g t h ( x [ x<y ] ) , s i z e=1 , prob =.3 )
r 2 [ x>=y]= rbinom ( l e n g t h ( x [ x>=y ] ) , s i z e=1 , prob =.7 )
x 2=x [ r 2==1 ] ; y 2=y [ r 2==1 ] ;
w2= i f e l s e ( x 2<y 2 , 1 , 0 ) ; sum (w2 )/ sum ( r 2 ) ;
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What will we study next class?

1. Introduction

2. Probability and Distribution (Chp 1-3)

3. Important Topics in Mathematical Statistics (Chp
4-6)

I 3.1 Elementary Statistical Inferences
I 3.1.1 Sampling and Statistics
I 3.1.2 Confidence Interval
I 3.1.3 Order Statistics
I 3.1.4 Hypothesis Testing
I 3.1.5 Statistical Simulation and Bootstrap

I 3.2 Consistency and Limiting Distributions
I 3.3 Maximum Likelihood Methods

4. Further Topics, Selected from Chp 7-11
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