What to do today (Oct 28, 2020)?

1. Introduction
2. Probability and Distribution (Chp 1-3)
3. Essential Topics in Mathematical Statistics
3.1 Elementary Statistical Inferences (Chp 4)

- 3.1.1 Sampling and Statistics
- 3.1.2 Confidence Interval
- 3.1.3 Order Statistics
- 3.1.4 Hypothesis Testing
- 3.1.5 Statistical Simulation and Bootstrap
3.2 Consistency and Limiting Distributions (Chp 5)
3.3 Maximum Likelihood Methods (Chp 6)

3.1.5 Statistical Simulation and Bootstrap: Monte Carlo Integration

 How to calculate $\int_{a}^{b} g(x) d x$? For example,$$
\int_{0}^{2} \sqrt{4-x^{2}} d x=2 \int_{0}^{2} \sqrt{4-x^{2}}\left(\frac{1}{2}\right) d x=2 E\left\{\sqrt{4-X^{2}}\right\}
$$

provided that $X \sim U(0,2)$.

(b) Approximates to the integral by generating n observations from $U(0,2)$, with $n=10^{k}$ for $k=1, \ldots, 5$.

3.1.5 Statistical Simulation and Bootstrap: Simulation Example 1

To verify the normal approximation to binomial distn:

```
xtmp=matrix(ifelse(runif(1000*10)<.3,1,0), ncol=10)
x=apply(xtmp,1,sum)
hist(x, freq=FALSE, ...)
y=rbinom(n=1000, size=10,prob=0.3)
hist(y, freq=FALSE, breaks=11, ...)
xtmp=matrix(ifelse(runif(1000*100)<.3,1,0),ncol=100)
x=apply(xtmp,1,sum)
hist(x, freq=FALSE,breaks=20, ...)
curve(exp(-(x-30)^2/2/(30*.7))/(2*pi*21)^.5, 0, 100, lty=1, col=4,
    lwd=3, add=TRUE)
y=rbinom(n=1000, size=100,prob=0.3)
hist(y, freq=FALSE,breaks=20, ...)
curve(exp(-(x-30)^2/2/(30*.7))/(2*pi*21)^.5, 0, 100, Ity=1, col=4,
    lwd=3, add=TRUE)
```


(b2). $\mathrm{Y} \stackrel{\mathrm{y}}{\sim} \mathrm{B}(100,0.3)$

3.1.5 Statistical Simulation and Bootstrap: Simulation Example 2

What can data mssing result in?

```
x=runif(1000);
y=runif(1000);
w=ifelse (x<y, 1,0); sum(w)/1000
r0=ifelse(runif(1000)<.5,1,0)
x0=x[r0==1]; y 0=y [r0=1 ];
w0=ifelse (x0<y0,1,0); sum(w0)/sum(r0);
r1=rep (0,1000)
r1[x<y]=rbinom(length (x[x<y]), size=1,prob=.8)
r1[x>=y]=rbinom(length (x[x>=y]), size=1, prob=.2)
x 1=x[r 1==1 ] ; y 1=y [r 1==1];
w1=ifelse (x1<y1,1,0); sum(w1)/sum(r1);
r2=rep (0,1000)
r2[x<y]=rbinom(Iength (x[x<y]), size=1, prob=.3)
r2[x>=y]=rbinom(length (x[x>=y]), size=1, prob=.7)
x 2=x[r 2==1 ] ; y 2=y [ r 2==1];
w2=ifelse(x2<y2,1,0); sum(w2)/sum(r2);
```


(a).all obs: rate of ' $x<y$ ' $=.495$

x
(c).nonrandom missing 50% : rate of ' $x<y^{\prime}=.789$

X
(b). random missing 50% : rate of ' $x<y^{\prime}=.486$

(d).nonrandom missing 50% : rate of ' $x<y^{\prime}=.337$

3.1.5 Statistical Simulation and Bootstrap: Preparation for Bootstrap

Consider rv $X \sim F(\cdot)$: iid observations X_{1}, \ldots, X_{n}
Definition. The following is the empirical function with the random sample:

$$
F_{n}(x)=\frac{1}{n} \sum_{i=1}^{n} \mathrm{I}\left(X_{i} \leq x\right) \text { for }-\infty<x<\infty
$$

For all $x \in(-\infty, \infty)$,

- $E\left\{F_{n}(x)\right\}=F(x)$ and $\operatorname{Var}\left\{F_{n}(x)\right\}=F(x)[1-F(x)] / n$.
- more
$F_{n}(\cdot)$ is a very good estimator of $F(\cdot)$.

$T \sim t(6)$.

3.1.5 Statistical Simulation and Bootstrap:

Bootstrap

Consider rv $X \sim F(\cdot)$: iid observations X_{1}, \ldots, X_{n}

- When to use a point estmator $\widehat{\theta}\left(X_{1}, \ldots, X_{n}\right)$ of a population parameter θ, how to estimate its variance $\operatorname{Var}(\widehat{\theta})$?
Bootstrap variance estimation:
- Step 1. Generate $X_{1 b}^{*}, \ldots, X_{n b}^{*}$ iid from the empirical function $F_{n}(\cdot)$.
(Resample with size n from X_{1}, \ldots, X_{n} with replacement.)
- Step 2. Calculate $\widehat{\theta}\left(X_{1 b}^{*}, \ldots, X_{n b}^{*}\right)$, denoted by $\widehat{\theta}_{b}^{*}$.
- Repeat Steps 1 and $2 B$ times and obtain $\left\{\widehat{\theta}_{b}^{*}: b=1, \ldots, B\right\}$.
- Calculate

$$
s_{\widehat{\theta}^{*}}^{2}=\sum_{b=1}^{B}\left(\widehat{\theta}_{b}^{*}-\overline{\hat{\theta}^{*}}\right)^{2} /(B-1)
$$

with $\overline{\hat{\theta}^{*}}=\sum_{b=1}^{B} \widehat{\theta}_{b}^{*} / B$.

- Use $s_{\widehat{\theta}^{*}}^{2}$ to estimate $\operatorname{Var}(\widehat{\theta})$.

3.1.5 Statistical Simulation and Bootstrap:
 Bootstrap

Consider rv $X \sim F(\cdot)$: iid observations X_{1}, \ldots, X_{n}

- How to obtain an interval estimator of a population parameter θ based on a point estmator $\widehat{\theta}\left(X_{1}, \ldots, X_{n}\right)$?
Bootstrap confidence interval:
- Step 1. Generate $X_{1 b}^{*}, \ldots, X_{n b}^{*}$ iid from the empirical function $F_{n}(\cdot)$.
(Resample with size n from X_{1}, \ldots, X_{n} with replacement.)
- Step 2. Calculate $\widehat{\theta}\left(X_{1 b}^{*}, \ldots, X_{n b}^{*}\right)$, denoted by $\widehat{\theta}_{b}^{*}$.
- Repeat Steps 1 and $2 B$ times and obtain $\left\{\widehat{\theta}_{b}^{*}: b=1, \ldots, B\right\}$.
- Sort the sequence as $\widehat{\theta}_{(1)}^{*} \leq \ldots \leq \widehat{\theta}_{(B)}^{*}$, and obtain bootstrap percentiles: $\widehat{\theta}_{((\alpha / 2) 100)}^{*}$ and $\widehat{\theta}_{((1-\alpha / 2) 100)}^{*}$.
- Use $\left(\widehat{\theta}_{((\alpha / 2) 100)}^{*}, \widehat{\theta}_{((1-\alpha / 2) 100)}^{*}\right)$ as a $(1-\alpha) 100 \% \mathrm{Cl}$ for θ.

Bootstrap example

Consider $X \sim F(\cdot)$ with $\mu=E(X)$ and iid obs X_{1}, \ldots, X_{n}.

$X \sim N\left(-1,5^{2}\right)$ with $n=100$ and $B=10^{k}$ for $k=1, \ldots, 5$.

What will we study next class?

1. Introduction
2. Probability and Distribution (Chp 1-3)
3. Essential Topics in Mathematical Statistics (Chp 4-6)

- 3.1 Elementary Statistical Inferences (Chp 4)
- 3.2 Consistency and Limiting Distributions (Chp 5)
- 3.2.1 Convergence in Probability
- 3.2.2 Convergence in Distribution
- 3.3 Maximum Likelihood Methods (Chp 6)

4. Further Topics, Selected from Chp 7-11
