
What to do today (Nov 2, 2020)?
1. Introduction
2. Probability and Distribution (Chp 1-3)
3. Essential Topics in Mathematical Statistics
3.1 Elementary Statistical Inferences (Chp 4)

I 3.1.1 Sampling and Statistics

I 3.1.2 Confidence Interval

I 3.1.3 Order Statistics

I 3.1.4 Hypothesis Testing

I 3.1.5 Statistical Simulation and Bootstrap

3.2 Consistency and Limiting Distributions (Chp 5)
I 3.2.1 Convergence in Probability

I 3.2.2 Convergence in Distribution

3.3 Maximum Likelihood Methods (Chp 6)
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3.1.5 Statistical Simulation and Bootstrap: Preparation for
Bootstrap

Consider rv X ∼ F (·): iid observations X1, . . . ,Xn

Definition. The following is the empirical function with the
random sample:

Fn(x) =
1

n

n∑
i=1

I(Xi ≤ x) for −∞ < x <∞.

For all x ∈ (−∞,∞),

I E
{
Fn(x)

}
= F (x) and Var

{
Fn(x)

}
= F (x)

[
1− F (x)

]/
n.

I more ... ...

Fn(·) is a very good estimator of F (·).
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3.1.5 Statistical Simulation and Bootstrap:
Bootstrap

Consider rv X ∼ F (·): iid observations X1, . . . ,Xn

I When to use a point estmator θ̂(X1, . . . ,Xn) of a population
parameter θ, how to estimate its variance Var(θ̂)?

Thinking ... ...

I If we could have a random sample θ̂b for b = 1, . . . ,B from
the same population as θ̂, we can estimate the variance with

s2
θ̂

=
B∑

b=1

(θ̂b −
¯̂
θ)2
/

(B − 1)

with
¯̂
θ =

∑B
b=1 θ̂b

/
B.

I That can be achieved if there are X1b, . . . ,Xnb iid from F (·).
However, F (·) is unknown. How to overcome it?



3.1.5 Statistical Simulation and Bootstrap:
Bootstrap

Consider rv X ∼ F (·): iid observations X1, . . . ,Xn

I When to use a point estmator θ̂(X1, . . . ,Xn) of a population
parameter θ, how to estimate its variance Var(θ̂)?

Bootstrap variance estimation:
I Step 1. Generate X ∗1b, . . . ,X

∗
nb iid from the empirical function

Fn(·).
(Resample with size n from X1, . . . ,Xn with replacement.)

I Step 2. Calculate θ̂(X ∗1b, . . . ,X
∗
nb), denoted by θ̂∗b.

I Repeat Steps 1. and 2. B times and obtain{
θ̂∗b : b = 1, . . . ,B

}
.

I With
¯̂
θ∗ =

∑B
b=1 θ̂

∗
b

/
B, calculate

s2
θ̂∗

=
∑B

b=1(θ̂∗b −
¯̂
θ∗)2

/
(B − 1).

I Use s2
θ̂∗

to estimate Var(θ̂).

Resampling methods: Jackknife (J.W. Tukey, 1958); Bootstrap (Bradley

Efron, 1979)



3.1.5 Statistical Simulation and Bootstrap:
Bootstrap

Consider rv X ∼ F (·): iid observations X1, . . . ,Xn

I How to obtain an interval estimator of a population parameter
θ based on a point estmator θ̂(X1, . . . ,Xn)?

Bootstrap confidence interval:

I Step 1. Generate X ∗1b, . . . ,X
∗
nb iid from the empirical function

Fn(·).
(Resample with size n from X1, . . . ,Xn with replacement.)

I Step 2. Calculate θ̂(X ∗1b, . . . ,X
∗
nb), denoted by θ̂∗b.

I Repeat Steps 1. and 2. B times and obtain{
θ̂∗b : b = 1, . . . ,B

}
.

I Sort the sequence as θ̂∗(1) ≤ . . . ≤ θ̂
∗
(B), and obtain bootstrap

percentiles: θ̂∗((α/2)100) and θ̂∗((1−α/2)100).

I Use (θ̂∗((α/2)100), θ̂
∗
((1−α/2)100)) as a (1− α)100% CI for θ.



Bootstrap example
Consider X ∼ F (·) with µ = E (X ) and iid obs X1, . . . ,Xn.
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X ∼ N(−1, 52) with n = 100 and B = 10k for k = 1, . . . , 5.



3.2.1 Convergence in Probability

Definition. We say a sequence of random variables (rvs)
{Yn : n = 1, 2, . . .} converges in probability to rv Y if, for any
(∀) ε > 0,

lim
n→∞

P
(∣∣Yn − Y

∣∣ ≥ ε) = 0.

Denote it by “Yn → Y in probability” as n→∞, or “Yn
P→ Y as

n→∞”.

I A special case is that Yn
P→ c, a constant.

Theorem. (Weak Law of Large Numbers (WLLN)). Let {Xn} be a
sequence of iid rvs with the common mean µ and variance
σ2 <∞. Let Yn = X̄n =

∑n
i=1 Xn

/
n. Then the sequence {Yn}

converges in probability to µ. That is, X̄n
P→ µ as n→∞.



Definition. Let X1, . . . ,Xn be a sample from F (x ; θ), θ ∈ Ω. A
statistic of the sample, denoted by Tn, is a consistent estimator of

θ if Tn
P→ θ as n→∞.

Comments:

I By WLLN, X̄n
P→ µ = E (X ) as n→∞ if the observations on X are

iid. That is, X̄n is a consistent estimator of µ.

I The sequence of sample proportions converges in probability to the
population proportion. (View it as the theoretical support to the
frequentist definition for probability.)

Theorem. Suppose Xn
P→ X and Yn

P→ Y as n→∞. The
following results hold:

I Xn + Yn
P→ X + Y , and XnYn

P→ XY .

I g(Xn)
P→ g(X ) for any continuous function g(·).

eg, the sample variance
[∑n

i=1 X
2
i − nX̄ 2

]/
(n − 1) is a consistent

estimator of σ2 = Var(X ) if X1, . . . ,Xn is a random sample from
the population.



3.2.2 Convergence in Distribution
Definition. Consider rv X ∼ FX (·). We call a sequence of rvs
{Xn} converges in distribution to X if

lim
n→∞

FXn(x) = lim
n→∞

P(Xn ≤ x) = F (x)

for all x ∈ C(FX ), the set of all continuous points of FX (.). Denote

it by Xn
D→ X . In other words, the limiting distribution or the

asymptotic distribution of {Xn} is FX (·).

Recall the Central Limit Theorem (CLT):
Theorem. (CLT) If X1, . . . ,Xn are iid with mean µ and variance σ2,

Yn =
1√
n

n∑
i=1

(
Xi − µ
σ

)
D→ N(0, 1)n→∞.

I That is,
(
X̄ − µ

)/√
σ2/n

D→→ N(0, 1) as n→∞.

I That is,
∑n

i=1 Xi ∼ N(nµ, nσ2) approximately as n >> 1.



3.2.2 Convergence in Distribution

Theorem. Consider a sequence of rvs {Xn}.
I If Xn

P→ X , then Xn
D→ X .

I If Xn
D→ c with c a constant, then Xn

P→ c .

Theorem. Consider sequences of rvs {Xn} with Xn
D→ X .

I If g(·) is a continuous function on the support of X , then

g(Xn)
D→ g(X ).

I If rvs An
P→ a and rvs Bn

P→ b with both a and b constant,
then

An + BnXn
D→ a + bX .

(Slutsky’s Theorem)



Example 3.6 Suppose X1, . . . ,Xn is a random sample from the
uniform distn U(0, θ).

I Yn = max(X1, . . . ,Xn) can be a “good estimator” of θ.
I Yn’s distn:

FYn(y) =


1, y > θ(
y/θ
)n
, 0 < y ≤ θ

0, t ≤ 0;
fYn(y) =

{
nyn−1/θn, 0 < y ≤ θ
0, elsewhere.

I E (Yn) = nθ/(n + 1), a biased estimator of θ.

I FYn(y)→ 1 or 0 for y ≥ θ or y < θ, respectively. Thus

Yn
D→ θ.

I Since θ is a constant, Yn
P→ θ: Yn is consistent.

I Furhter, let Wn = n(θ − Yn). The distn of Wn

P(Wn ≤ t) = P(Yn ≥ θ − t/n) = 1−
(

1− t/θ

n

)n
converges to 1− exp(−t/θ). That is Wn

D→W , which follows
the exponential distn NE (θ).



What will we study next class?

1. Introduction

2. Probability and Distribution (Chp 1-3)

3. Essential Topics in Mathematical Statistics (Chp 4-6)

I 3.1 Elementary Statistical Inferences (Chp 4)
I 3.2 Consistency and Limiting Distributions (Chp 5)

I 3.2.1 Convergence in Probability
I 3.2.2 Convergence in Distribution

I 3.3 Maximum Likelihood Methods (Chp 6)

4. Further Topics, Selected from Chp 7-11
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