What to do today (Nov 2, 2020)?

- 1. Introduction
- 2. Probability and Distribution (Chp 1-3)
- 3. Essential Topics in Mathematical Statistics
- 3.1 Elementary Statistical Inferences (Chp 4)
 - ▶ 3.1.1 Sampling and Statistics
 - 3.1.2 Confidence Interval
 - 3.1.3 Order Statistics
 - 3.1.4 Hypothesis Testing
 - 3.1.5 Statistical Simulation and Bootstrap
- 3.2 Consistency and Limiting Distributions (Chp 5)
 - ► 3.2.1 Convergence in Probability
 - ► 3.2.2 Convergence in Distribution
- 3.3 Maximum Likelihood Methods (Chp 6)

3.1.5 Statistical Simulation and Bootstrap: Preparation for Bootstrap

Consider rv $X \sim F(\cdot)$: iid observations X_1, \ldots, X_n

Definition. The following is the **empirical function** with the random sample:

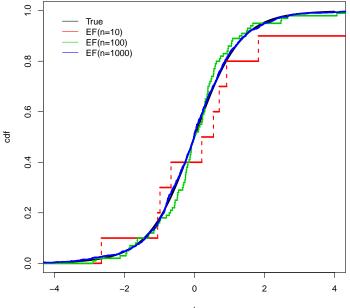
$$F_n(x) = rac{1}{n} \sum_{i=1}^n I(X_i \le x) ext{ for } -\infty < x < \infty.$$

For all $x \in (-\infty, \infty)$,

• $E\{F_n(x)\} = F(x) \text{ and } Var\{F_n(x)\} = F(x)[1-F(x)]/n.$

more

 $F_n(\cdot)$ is a very good estimator of $F(\cdot)$.



 $T \sim t(6)$.

t

3.1.5 Statistical Simulation and Bootstrap: Bootstrap

Consider rv $X \sim F(\cdot)$: iid observations X_1, \ldots, X_n

When to use a point estmator θ(X₁,...,X_n) of a population parameter θ, how to estimate its variance Var(θ)?

Thinking

 If we could have a random sample θ
_b for b = 1,..., B from the same population as θ
_i, we can estimate the variance with

$$s_{\widehat{ heta}}^2 = \sum_{b=1}^B (\widehat{ heta}_b - \overline{\widehat{ heta}})^2 / (B-1)$$

with $\overline{\hat{\theta}} = \sum_{b=1}^{B} \widehat{\theta}_b / B$.

► That can be achieved if there are X_{1b},..., X_{nb} iid from F(·). However, F(·) is unknown. How to overcome it?

3.1.5 Statistical Simulation and Bootstrap:

Bootstrap

Consider rv $X \sim F(\cdot)$: iid observations X_1, \ldots, X_n

When to use a point estmator θ̂(X₁,...,X_n) of a population parameter θ, how to estimate its variance Var(θ̂)?

Bootstrap variance estimation:

Step 1. Generate $X_{1b}^*, \ldots, X_{nb}^*$ iid from the empirical function $F_n(\cdot)$.

(Resample with size n from X_1, \ldots, X_n with replacement.)

- Step 2. Calculate $\widehat{\theta}(X_{1b}^*, \dots, X_{nb}^*)$, denoted by $\widehat{\theta}_b^*$.
- ▶ Repeat Steps 1. and 2. *B* times and obtain $\{\widehat{\theta}_b^* : b = 1, \dots, B\}.$
- ► With $\overline{\hat{\theta}^*} = \sum_{b=1}^{B} \widehat{\theta}_b^* / B$, calculate $s_{\widehat{\theta}^*}^2 = \sum_{b=1}^{B} (\widehat{\theta}_b^* - \overline{\widehat{\theta}^*})^2 / (B - 1)$.

• Use
$$s_{\hat{\theta}^*}^2$$
 to estimate $Var(\hat{\theta})$.

Resampling methods: Jackknife (J.W. Tukey, 1958); Bootstrap (Bradley Efron, 1979)

3.1.5 Statistical Simulation and Bootstrap: Bootstrap

Consider rv $X \sim F(\cdot)$: iid observations X_1, \ldots, X_n

• How to obtain an interval estimator of a population parameter θ based on a point estmator $\hat{\theta}(X_1, \ldots, X_n)$?

Bootstrap confidence interval:

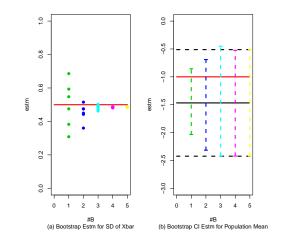
Step 1. Generate $X_{1b}^*, \ldots, X_{nb}^*$ iid from the empirical function $F_n(\cdot)$.

(Resample with size n from X_1, \ldots, X_n with replacement.)

- ▶ Step 2. Calculate $\hat{\theta}(X_{1b}^*, \dots, X_{nb}^*)$, denoted by $\hat{\theta}_b^*$.
- Repeat Steps 1. and 2. *B* times and obtain $\{\widehat{\theta}_b^*: b = 1, \dots, B\}.$
- Sort the sequence as θ^{*}₍₁₎ ≤ ... ≤ θ^{*}_(B), and obtain bootstrap percentiles: θ^{*}_{((α/2)100)} and θ^{*}_{((1-α/2)100)}.
- Use $(\widehat{\theta}^*_{((\alpha/2)100)}, \widehat{\theta}^*_{((1-\alpha/2)100)})$ as a $(1-\alpha)100\%$ CI for θ .

Bootstrap example

Consider $X \sim F(\cdot)$ with $\mu = E(X)$ and iid obs X_1, \ldots, X_n .



 $X \sim N(-1, 5^2)$ with n = 100 and $B = 10^k$ for $k = 1, \dots, 5$.

3.2.1 Convergence in Probability

Definition. We say a sequence of random variables (rvs) $\{Y_n : n = 1, 2, ...\}$ converges in probability to rv Y if, for any $(\forall) \ \epsilon > 0$,

$$\lim_{n\to\infty} P(|Y_n-Y|\geq\epsilon)=0.$$

Denote it by " $Y_n \to Y$ in probability" as $n \to \infty$, or " $Y_n \xrightarrow{P} Y$ as $n \to \infty$ ".

• A special case is that $Y_n \xrightarrow{P} c$, a constant.

Theorem. (Weak Law of Large Numbers (WLLN)). Let $\{X_n\}$ be a sequence of iid rvs with the common mean μ and variance $\sigma^2 < \infty$. Let $Y_n = \bar{X}_n = \sum_{i=1}^n X_n/n$. Then the sequence $\{Y_n\}$ converges in probability to μ . That is, $\bar{X}_n \xrightarrow{P} \mu$ as $n \to \infty$.

Definition. Let X_1, \ldots, X_n be a sample from $F(x; \theta), \theta \in \Omega$. A statistic of the sample, denoted by T_n , is a **consistent** estimator of θ if $T_n \xrightarrow{P} \theta$ as $n \to \infty$.

Comments:

- ▶ By WLLN, $\bar{X}_n \xrightarrow{P} \mu = E(X)$ as $n \to \infty$ if the observations on X are iid. That is, \bar{X}_n is a consistent estimator of μ .
- The sequence of sample proportions converges in probability to the population proportion. (*View it as the theoretical support to the frequentist definition for probability.*)

Theorem. Suppose $X_n \xrightarrow{P} X$ and $Y_n \xrightarrow{P} Y$ as $n \to \infty$. The following results hold:

- $X_n + Y_n \xrightarrow{P} X + Y$, and $X_n Y_n \xrightarrow{P} XY$.
- $g(X_n) \xrightarrow{P} g(X)$ for any continuous function $g(\cdot)$.

eg, the sample variance $\left[\sum_{i=1}^{n} X_i^2 - n\bar{X}^2\right]/(n-1)$ is a consistent estimator of $\sigma^2 = Var(X)$ if X_1, \ldots, X_n is a random sample from the population.

3.2.2 Convergence in Distribution

1

Definition. Consider rv $X \sim F_X(\cdot)$. We call a sequence of rvs $\{X_n\}$ converges in distribution to X if

$$\lim_{n\to\infty}F_{X_n}(x)=\lim_{n\to\infty}P(X_n\leq x)=F(x)$$

for all $x \in C(F_X)$, the set of all continuous points of $F_X(.)$. Denote it by $X_n \xrightarrow{D} X$. In other words, the **limiting distribution** or the **asymptotic distribution** of $\{X_n\}$ is $F_X(\cdot)$.

Recall the Central Limit Theorem (CLT): **Theorem.** (CLT) If X_1, \ldots, X_n are iid with mean μ and variance σ^2 ,

$$Y_n = rac{1}{\sqrt{n}} \sum_{i=1}^n \left(rac{X_i - \mu}{\sigma}
ight) \stackrel{D}{
ightarrow} N(0, 1)n
ightarrow \infty.$$

- ► That is, $(\bar{X} \mu) / \sqrt{\sigma^2 / n} \xrightarrow{D} \to N(0, 1)$ as $n \to \infty$.
- That is, $\sum_{i=1}^{n} X_i \sim N(n\mu, n\sigma^2)$ approximately as n >> 1.

3.2.2 Convergence in Distribution

Theorem. Consider a sequence of rvs $\{X_n\}$.

• If
$$X_n \xrightarrow{P} X$$
, then $X_n \xrightarrow{D} X$.

• If $X_n \xrightarrow{D} c$ with c a constant, then $X_n \xrightarrow{P} c$.

Theorem. Consider sequences of rvs $\{X_n\}$ with $X_n \xrightarrow{D} X$.

- If $g(\cdot)$ is a continuous function on the support of X, then $g(X_n) \xrightarrow{D} g(X)$.
- ▶ If rvs $A_n \xrightarrow{P} a$ and rvs $B_n \xrightarrow{P} b$ with both *a* and *b* constant, then

$$A_n + B_n X_n \stackrel{D}{\to} a + b X.$$

(Slutsky's Theorem)

Example 3.6 Suppose X_1, \ldots, X_n is a random sample from the uniform distn $U(0, \theta)$.

- $Y_n = \max(X_1, \ldots, X_n)$ can be a "good estimator" of θ .
- ► *Y_n*'s distn:

$$F_{Y_n}(y) = \begin{cases} 1, & y > \theta \\ (y/\theta)^n, & 0 < y \le \theta \\ 0, & t \le 0; \end{cases} \quad f_{Y_n}(y) = \begin{cases} ny^{n-1}/\theta^n, & 0 < y \le \theta \\ 0, & elsewhere. \end{cases}$$

•
$$E(Y_n) = n\theta/(n+1)$$
, a biased estimator of θ .

►
$$F_{Y_n}(y) \to 1$$
 or 0 for $y \ge \theta$ or $y < \theta$, respectively. Thus $Y_n \xrightarrow{D} \theta$.

- Since θ is a constant, $Y_n \xrightarrow{P} \theta$: Y_n is consistent.
- Further, let $W_n = n(\theta Y_n)$. The distn of W_n

$$P(W_n \leq t) = P(Y_n \geq \theta - t/n) = 1 - \left(1 - \frac{t/\theta}{n}\right)^n$$

converges to $1 - \exp(-t/\theta)$. That is $W_n \xrightarrow{D} W$, which follows the exponential distn $NE(\theta)$.

What will we study next class?

- 1. Introduction
- 2. Probability and Distribution (Chp 1-3)

3. Essential Topics in Mathematical Statistics (Chp 4-6)

- ► 3.1 Elementary Statistical Inferences (Chp 4)
- 3.2 Consistency and Limiting Distributions (Chp 5)
 - ► 3.2.1 Convergence in Probability
 - ► 3.2.2 Convergence in Distribution
- 3.3 Maximum Likelihood Methods (Chp 6)
- 4. Further Topics, Selected from Chp 7-11