What to do today (Nov 4, 2020)?

- 1. Introduction
- 2. Probability and Distribution (Chp 1-3)
- **3. Essential Topics in Mathematical Statistics** *3.1 Elementary Statistical Inferences (Chp 4)*
- 3.2 Consistency and Limiting Distributions (Chp 5)
 - 3.2.1 Convergence in Probability
 - ► 3.2.2 Convergence in Distribution

3.3 Maximum Likelihood Methods (Chp 6)

4. Further Topics, Selected from Chp 7-11

Example 3.6 Suppose X_1, \ldots, X_n is a random sample from the uniform distn $U(0, \theta)$.

- $Y_n = \max(X_1, \ldots, X_n)$ can be a "good estimator" of θ .
- ► Furhter, let $W_n = n(\theta Y_n)$. $W_n \xrightarrow{D} W$, which follows the exponential distn $NE(\theta)$.

3.2.2 Convergence in Distribution: Some Related Material

Definition. A sequence of rvs $\{X_n\}$ is **bounded in probability** if $\forall \epsilon > 0$, there exists a constant B_{ϵ} and integer N_{ϵ} such that

$$n \ge N_{\epsilon} \Longrightarrow P(|X_n| \le B_{\epsilon}) \ge 1 - \epsilon.$$

• If $X_n \xrightarrow{D} X$, $\{X_n\}$ is bounded in probability.

• If $\{X_n\}$ is bounded in probability and $Y_n \xrightarrow{P} 0$, then $X_n Y_n \xrightarrow{P} 0$.

3.2.2 Convergence in Distribution: Some Related Material

Theorem. (Δ -Method) Assume the sequence of rvs $\{X_n\}$ satisfies $\sqrt{n}(X_n - \theta) \xrightarrow{D} N(0, \sigma^2)$. If the function g(x) is differentiable at θ and $g'(\theta) \neq 0$, then

$$\sqrt{n}(g(X_n)-g(\theta)) \xrightarrow{D} N(0,\sigma^2[g'(\theta)]^2).$$

Proof:

3.2.2 Convergence in Distribution: Some Related Material

Theorem. Consider the sequence of rvs $\{X_n\}$ with the mgf of X_n as $M_{X_n}(t)$ for -h < t < h, and a rv X with mgf $M_X(t)$ for -h < t < h. If $\lim_{n\to\infty} M_{X_n}(t) = M_X(t)$ for -h < t < h, then $X_n \xrightarrow{D} X$. Example for its application: to show

" $B(n, \theta) \approx Poisson(n\theta) \approx N(n\theta, n\theta(1-\theta))$ when n >> 1".

What will we do next?

- 1. Introduction
- 2. Probability and Distribution (Chp 1-3)

3. Important Topics in Mathematical Statistics

- ▶ 3.1 Elementary Statistical Inferences (Chp 4)
- 3.2 Consistency and Limiting Distributions (Chp 5)
- 3.3 Maximum Likelihood Methods (Chp 6)

Midterm 2 during Wednesday Nov 11-13 2020

4. Further Topics, Selected from Chp 7-11